1
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
2
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
3
|
Müller CP. Drug instrumentalization. Behav Brain Res 2020; 390:112672. [PMID: 32442549 DOI: 10.1016/j.bbr.2020.112672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Psychoactive drugs with addiction potential are widely used by people of virtually all cultures in a non-addictive way. In order to understand this behaviour, its population penetrance, and its persistence, drug instrumentalization was suggested as a driving force for this consumption. Drug instrumentalization theory holds that psychoactive drugs are consumed in a very systematic way in order to make other, non-drug-related behaviours more efficient. Here, we review the evolutionary origin of this behaviour and its psychological mechanisms and explore the neurobiological and neuropharmacological mechanisms underlying them. Instrumentalization goals are discussed, for which an environmentally selective and mental state-dependent consumption of psychoactive drugs can be learned and maintained in a non-addictive way. A small percentage of people who regularly instrumentalize psychoactive drugs make a transition to addiction, which often starts with qualitative and quantitative changes in the instrumentalization goals. As such, addiction is proposed to develop from previously established long-term drug instrumentalization. Thus, preventing and treating drug addiction in an individualized medicine approach may essentially require understanding and supporting personal instrumentalization goals.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Rhein C, Mühle C, Lenz B, Richter-Schmidinger T, Kogias G, Boix F, Lourdusamy A, Dörfler A, Peters O, Ramirez A, Jessen F, Maier W, Hüll M, Frölich L, Teipel S, Wiltfang J, Kornhuber J, Müller CP. Association of a CAMK2A genetic variant with logical memory performance and hippocampal volume in the elderly. Brain Res Bull 2020; 161:13-20. [PMID: 32418901 DOI: 10.1016/j.brainresbull.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
Calcium/Calmodulin-dependent kinase alpha (αCaMKII) has been shown to play an essential role in synaptic plasticity and in learning and memory in animal models. However, there is little evidence for an involvement in specific memories in humans. Here we tested the potential involvement of the αCaMKII coding gene CAMK2A in verbal logical memory in two Caucasian populations from Germany, in a sample of 209 elderly people with cognitive impairments and a sample of 142 healthy adults. The association of single nucleotide polymorphisms (SNPs) located within the genomic region of CAMK2A with verbal logical memory learning and retrieval from the Wechsler Memory Scale was measured and hippocampal volume was assessed by structural MRI. In the elderly people, we found the minor allele of CAMK2A intronic SNP rs919741 to predict a higher hippocampal volume and better logical memory retrieval. This association was not found in healthy adults. The present study may provide evidence for an association of a genetic variant of the CAMK2A gene specifically with retrieval of logical memory in elderly humans. This effect is possibly mediated by a higher hippocampal volume.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Anbarasu Lourdusamy
- Division of Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, NG7 2UH, UK
| | - Arnd Dörfler
- Department of Neuroradiology, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Eschenallee 3, DE-14050 Berlin, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany; Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Michael Hüll
- Emmendingen Center for Psychiatry, Clinic for Geriatric Psychiatry and Psychotherapy and University of Freiburg, Freiburg, Germany
| | - Lutz Frölich
- Central Institute of Mental Health, Mannheim, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, 18147 Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen 37075, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
6
|
Hassan Z, Suhaimi FW, Ramanathan S, Ling KH, Effendy MA, Müller CP, Dringenberg HC. Mitragynine (Kratom) impairs spatial learning and hippocampal synaptic transmission in rats. J Psychopharmacol 2019; 33:908-918. [PMID: 31081443 DOI: 10.1177/0269881119844186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood. AIMS In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus. METHODS Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats. RESULTS/OUTCOMES Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine. CONCLUSIONS/INTERPRETATION These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.
Collapse
Affiliation(s)
- Zurina Hassan
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Farah W Suhaimi
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Surash Ramanathan
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - King-Hwa Ling
- 2 Department of Biomedical Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohamad A Effendy
- 1 Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- 3 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hans C Dringenberg
- 4 Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
7
|
Caffino L, Piva A, Mottarlini F, Di Chio M, Giannotti G, Chiamulera C, Fumagalli F. Ketamine Self-Administration Elevates αCaMKII Autophosphorylation in Mood and Reward-Related Brain Regions in Rats. Mol Neurobiol 2017; 55:5453-5461. [PMID: 28948570 DOI: 10.1007/s12035-017-0772-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
Modulation of αCaMKII expression and phosphorylation is a feature shared by drugs of abuse with different mechanisms of action. Accordingly, we investigated whether αCaMKII expression and activation could be altered by self-administration of ketamine, a non-competitive antagonist of the NMDA glutamate receptor, with antidepressant and psychotomimetic as well as reinforcing properties. Rats self-administered ketamine at a sub-anesthetic dose for 43 days and were sacrificed 24 h after the last drug exposure; reward-related brain regions, such as medial prefrontal cortex (PFC), ventral striatum (vS), and hippocampus (Hip), were used for the measurement of αCaMKII-mediated signaling. αCaMKII phosphorylation was increased in these brain regions suggesting that ketamine, similarly to other reinforcers, activates this kinase. We next measured the two main targets of αCaMKII, i.e., GluN2B (S1303) and GluA1 (S831), and found increased activation of GluN2B (S1303) together with reduced phosphorylation of GluA1 (S831). Since GluN2B, via inhibition of ERK, regulates the membrane expression of GluA1, we measured ERK2 phosphorylation in the crude synaptosomal fraction of these brain regions, which was significantly reduced suggesting that ketamine-induced phosphorylation of αCaMKII promotes GluN2B (S1303) phosphorylation that, in turn, inhibits ERK 2 signaling, an effect that results in reduced membrane expression and phosphorylation of GluA1. Taken together, our findings point to αCaMKII autophosphorylation as a critical signature of ketamine self-administration providing an intracellular mechanism to explain the different effects caused by αCaMKII autophosphorylation on the post-synaptic GluN2B- and GluA1-mediated functions. These data add ketamine to the list of drugs of abuse converging on αCaMKII to sustain their addictive properties.
Collapse
Affiliation(s)
- Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandro Piva
- Neuropsychopharmacology Laboratory, Section Pharmacology, Department of Diagnostic and Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marzia Di Chio
- Neuropsychopharmacology Laboratory, Section Pharmacology, Department of Diagnostic and Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Laboratory, Section Pharmacology, Department of Diagnostic and Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
8
|
Yu C, Zhou X, Fu Q, Peng Q, Oh KW, Hu Z. A New Insight into the Role of CART in Cocaine Reward: Involvement of CaMKII and Inhibitory G-Protein Coupled Receptor Signaling. Front Cell Neurosci 2017; 11:244. [PMID: 28860971 PMCID: PMC5559471 DOI: 10.3389/fncel.2017.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are neuropeptides that are expressed in brain regions associated with reward, such as the nucleus accumbens (NAc), and play a role in cocaine reward. Injection of CART into the NAc can inhibit the behavioral effects of cocaine, and injecting CART into the ventral tegmental area (VTA) reduces cocaine-seeking behavior. However, the exact mechanism of these effects is not clear. Recent research has demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and inhibitory G-protein coupled receptor (GPCR) signaling are involved in the mechanism of the effect of CART on cocaine reward. Hence, we review the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward and provide a new insight into the mechanism of that effect. In this article, we will first review the biological function of CART and discuss the role of CART in cocaine reward. Then, we will focus on the role of CaMKII and inhibitory GPCR signaling in cocaine reward. Furthermore, we will discuss how CaMKII and inhibitory GPCR signaling are involved in the mechanistic action of CART in cocaine reward. Finally, we will provide our opinions regarding the future directions of research on the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward.
Collapse
Affiliation(s)
- ChengPeng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang UniversityNanchang, China
| | - XiaoYan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang UniversityNanchang, China.,Department of Respiration, Department Two, Jiangxi Provincial People's HospitalNanchang, China
| | - QingHua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National UniversityCheongju, South Korea
| | - ZhenZhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical CollegeNanchang, China
| |
Collapse
|
9
|
Ladrón de Guevara-Miranda D, Millón C, Rosell-Valle C, Pérez-Fernández M, Missiroli M, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Martínez-Losa M, Álvarez-Dolado M, Santín LJ, Castilla-Ortega E. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech 2017; 10:323-336. [PMID: 28138095 PMCID: PMC5374316 DOI: 10.1242/dmm.026682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.
Collapse
Affiliation(s)
- David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Carmelo Millón
- Departamento de Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Cristina Rosell-Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Mercedes Pérez-Fernández
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Michele Missiroli
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Magdalena Martínez-Losa
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Manuel Álvarez-Dolado
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
10
|
Activin Controls Ethanol Potentiation of Inhibitory Synaptic Transmission Through GABAA Receptors and Concomitant Behavioral Sedation. Neuropsychopharmacology 2016; 41:2024-33. [PMID: 26717882 PMCID: PMC4908639 DOI: 10.1038/npp.2015.372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 01/01/2023]
Abstract
Activin, a member of the transforming growth factor-β family, exerts multiple functions in the nervous system. Originally identified as a neurotrophic and -protective agent, increasing evidence implicates activin also in the regulation of glutamatergic and GABAergic neurotransmission in brain regions associated with cognitive and affective functions. To explore how activin impacts on ethanol potentiation of GABA synapses and related behavioral paradigms, we used an established transgenic model of disrupted activin receptor signaling, in which mice express a dominant-negative activin receptor IB mutant (dnActRIB) under the control of the CaMKIIα promoter. Comparison of GABAA receptor currents in hippocampal neurons from dnActRIB mice and wild-type mice showed that all concentrations of ethanol tested (30-150 mM) produced much stronger potentiation of phasic inhibition in the mutant preparation. In dentate granule cells of dnActRIB mice, tonic GABA inhibition was more pronounced than in wild-type neurons, but remained insensitive to low ethanol (30 mM) in both preparations. The heightened ethanol sensitivity of phasic inhibition in mutant hippocampi resulted from both pre- and postsynaptic mechanisms, the latter probably involving PKCɛ. At the behavioral level, ethanol produced significantly stronger sedation in dnActRIB mice than in wild-type mice, but did not affect consumption of ethanol or escalation after withdrawal. We link the abnormal narcotic response of dnActRIB mice to ethanol to the excessive potentiation of inhibitory neurotransmission. Our study suggests that activin counteracts oversedation from ethanol by curtailing its augmenting effect at GABA synapses.
Collapse
|
11
|
Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev 2016; 66:15-32. [PMID: 27118134 DOI: 10.1016/j.neubiorev.2016.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
12
|
CaM Kinases: From Memories to Addiction. Trends Pharmacol Sci 2015; 37:153-166. [PMID: 26674562 DOI: 10.1016/j.tips.2015.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is a major psychiatric disorder with a neurobiological basis that is still insufficiently understood. Initially, non-addicted, controlled drug consumption and drug instrumentalization are established. They comprise highly systematic behaviours acquired by learning and the establishment of drug memories. Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important Ca(2+) sensors translating glutamatergic activation into synaptic plasticity during learning and memory formation. Here we review the role of CaMKs in the establishment of drug-related behaviours in animal models and in humans. Converging evidence now shows that CaMKs are a crucial mechanism of how addictive drugs induce synaptic plasticity and establish various types of drug memories. Thereby, CaMKs are not only molecular relays for glutamatergic activity but they also directly control dopaminergic and serotonergic activity in the mesolimbic reward system. They can now be considered as major molecular pathways translating normal memory formation into establishment of drug memories and possibly transition to drug addiction.
Collapse
|