1
|
Zhang S, Peng B, Chen Z, Yu J, Deng G, Bao Y, Ma C, Du F, Sheu WC, Kimberly WT, Simard JM, Coman D, Chen Q, Hyder F, Zhou J, Sheth KN. Brain-targeting, acid-responsive antioxidant nanoparticles for stroke treatment and drug delivery. Bioact Mater 2022; 16:57-65. [PMID: 35386312 PMCID: PMC8958421 DOI: 10.1016/j.bioactmat.2022.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Stroke is the leading cause of death and disability. Currently, there is no effective pharmacological treatment for this disease, which can be partially attributed to the inability to efficiently deliver therapeutics to the brain. Here we report the development of natural compound-derived nanoparticles (NPs), which function both as a potent therapeutic agent for stroke treatment and as an efficient carrier for drug delivery to the ischemic brain. First, we screened a collection of natural nanomaterials and identified betulinic acid (BA) as one of the most potent antioxidants for stroke treatment. Next, we engineered BA NPs for preferential drug release in acidic ischemic tissue through chemically converting BA to betulinic amine (BAM) and for targeted drug delivery through surface conjugation of AMD3100, a CXCR4 antagonist. The resulting AMD3100-conjugated BAM NPs, or A-BAM NPs, were then assessed as a therapeutic agent for stroke treatment and as a carrier for delivery of NA1, a neuroprotective peptide. We show that intravenous administration of A-BAM NPs effectively improved recovery from stroke and its efficacy was further enhanced when NA1 was encapsulated. Due to their multifunctionality and significant efficacy, we anticipate that A-BAM NPs have the potential to be translated both as a therapeutic agent and as a drug carrier to improve the treatment of stroke.
Collapse
Key Words
- A-BAM NPs, A-BAM NPs
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Acid-triggered release
- Antioxidant nanoparticles
- BA, betulinic acid
- BAM, betulinic amine
- BBB, blood brain barrier
- BIRDS, biosensor imaging of redundant deviation in shifts
- BT, ß-sitosterol
- DLS, dynamic light scattering
- DTA, dehydrotrametenolic acid
- DYDA, diketohydrindylidene diketohydrindamine
- Drug delivery
- GA, glycyrrhetic acid
- Ischemic stroke
- LCMS, liquid chromatography mass spectrometry
- LP, lupeol
- MCAO, middle cerebral artery occlusion
- NA1
- NMR, nuclear magnetic resonance
- NP, nanoparticle
- OA, oleanolic acid
- PAA, poricoic acid
- PEG, polyethylene glycol
- SA, sumaresinolic acid
- SEM, scanning electron microscopy
- ST, stigmasterol
- TEM, transmission electron microscope
- TTC, triphenyltetrazolium chloride
- UA, ursolic acid
- tPA, tissue-type plasminogen activator
Collapse
Affiliation(s)
- Shenqi Zhang
- Department of Neurosurgery, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | | | | | | | | | | | - Chao Ma
- Department of Neurosurgery, USA
| | | | | | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Fahmeed Hyder
- Department of Biomedical Engineering, USA
- Department of Radiology and Biomedical Imaging, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, USA
- Department of Biomedical Engineering, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
2
|
Wang Y, Wang Y, Li S, Cui Y, Liang X, Shan J, Gu W, Qiu J, Li Y, Wang G. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke. J Nanobiotechnology 2021; 19:331. [PMID: 34674712 PMCID: PMC8529766 DOI: 10.1186/s12951-021-01067-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ischemic stroke is an acute and severe neurological disease, and reperfusion is an effective way to reverse brain damage after stroke. However, reperfusion causes secondary tissue damage induced by inflammatory responses, called ischemia/reperfusion (I/R) injury. Current therapeutic strategies that control inflammation to treat I/R are less than satisfactory. RESULTS We report a kind of shield and sword nano-soldier functionalized nanoparticles (monocyte membranes-coated rapamycin nanoparticles, McM/RNPs) that can reduce inflammation and relieve I/R injury by blocking monocyte infiltration and inhibiting microglia proliferation. The fabricated McM/RNPs can actively target and bind to inflammatory endothelial cells, which inhibit the adhesion of monocytes to the endothelium, thus acting as a shield. Subsequently, McM/RNPs can penetrate the endothelium to reach the injury site, similar to a sword, and release the RAP drug to inhibit the proliferation of inflammatory cells. In a rat I/R injury model, McM/RNPs exhibited improved active homing to I/R injury areas and greatly ameliorated neuroscores and infarct volume. Importantly, in vivo animal studies revealed good safety for McM/RNPs treatment. CONCLUSION The results demonstrated that the developed McM/RNPs may serve as an effective and safe nanovehicles for I/R injury therapy.
Collapse
Affiliation(s)
- Yanyun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shuyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiping Liang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Gu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Yiliang Li
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Zhou Y, Peng J, Cheng L, Peng Y, Zhang M, Liu M, Avery J, Zhou J, Jiang Y. Secreted Protein Acidic and Cysteine Rich (SPARC) Regulates the Pathological Response to Ischemic Insults and Represents a Promising Therapeutic Target for Stroke Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Zhou
- Department of NeurosurgeryShenzhen People's HospitalJinan University Second Clinical Medical College1st Affiliated Hospital of Southern University of Science and Technology Shenzhen Guangdong 518020 China
- Department of NeurosurgeryYale University New Haven CT 06511 USA
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jing Peng
- National Engineering Research Center of Human Stem CellsCentral South University Changsha Hunan 410000 China
| | - Lamei Cheng
- National Engineering Research Center of Human Stem CellsCentral South University Changsha Hunan 410000 China
| | - Yong Peng
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Mingming Zhang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Min Liu
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jonathan Avery
- Department of NeurosurgeryYale University New Haven CT 06511 USA
| | - Jiangbing Zhou
- Department of NeurosurgeryYale University New Haven CT 06511 USA
| | - Yugang Jiang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South University Changsha Hunan 410000 China
| |
Collapse
|
4
|
Deng G, Ma C, Zhao H, Zhang S, Liu J, Liu F, Chen Z, Chen AT, Yang X, Avery J, Zou P, Du F, Lim KP, Holden D, Li S, Carson RE, Huang Y, Chen Q, Kimberly WT, Simard JM, Sheth KN, Zhou J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics 2019; 9:6991-7002. [PMID: 31660082 PMCID: PMC6815966 DOI: 10.7150/thno.35791] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Stroke is a deadly disease without effective pharmacotherapies, which is due to two major reasons. First, most therapeutics cannot efficiently penetrate the brain. Second, single agent pharmacotherapy may be insufficient and effective treatment of stroke requires targeting multiple complementary targets. Here, we set to develop single component, multifunctional nanoparticles (NPs) for targeted delivery of glyburide to the brain for stroke treatment. Methods: To characterize the brain penetrability, we radiolabeled glyburide, intravenously administered it to stroke- bearing mice, and determined its accumulation in the brain using positron emission tomography-computed tomography (PET/CT). To identify functional nanomaterials to improve drug delivery to the brain, we developed a chemical extraction approach and tested it for isolation of nanomaterials from E. ulmoides, a medicinal herb. To assess the therapeutic benefits, we synthesized glyburide-loaded NPs and evaluated them in stroke- bearing mice. Results: We found that glyburide has a limited ability to penetrate the ischemic brain. We identified betulinic acid (BA) capable of forming NPs, which, after intravenous administration, efficiently penetrate the brain and significantly reduce ischemia-induced infarction as an antioxidant agent. We demonstrated that BA NPs enhance delivery of glyburide, leading to therapeutic benefits significantly greater than those achieved by either glyburide or BA NPs. Conclusion: This study suggests a new direction to identify functional nanomaterials and a simple approach to achieving anti-edema and antioxidant combination therapy. The resulting glyburide- loaded BA NPs may be translated into clinical applications to improve clinical management of stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haitian Zhao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xin Yang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Keun-poong Lim
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Richard E. Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Yiyun Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
5
|
Ma J, Zhang S, Liu J, Liu F, Du F, Li M, Chen AT, Bao Y, Suh HW, Avery J, Deng G, Zhou Y, Wu P, Sheth K, Wang H, Zhou J. Targeted Drug Delivery to Stroke via Chemotactic Recruitment of Nanoparticles Coated with Membrane of Engineered Neural Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902011. [PMID: 31290245 PMCID: PMC11089900 DOI: 10.1002/smll.201902011] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Indexed: 05/18/2023]
Abstract
Cell membrane coating has recently emerged as a promising biomimetic approach to engineering nanoparticles (NPs) for targeted drug delivery. However, simple cell membrane coating may not meet the need for efficient drug delivery to the brain. Here, a novel molecular engineering strategy to modify the surface of NPs with a cell membrane coating for enhanced brain penetration is reported. By using poly(lactic-co-glycolic) acid NPs as a model, it is shown that delivery of NPs to the ischemic brain is enhanced through surface coating with the membrane of neural stem cells (NSCs), and the delivery efficiency can be further increased using membrane isolated from NSCs engineered for overexpression of CXCR4. It is found that this enhancement is mediated by the chemotactic interaction of CXCR4 with SDF-1, which is enriched in the ischemic microenvironment. It is demonstrated that the resulting CXCR4-overexpressing membrane-coated NPs, termed CMNPs, significantly augment the efficacy of glyburide, an anti-edema agent, for stroke treatment. The study suggests a new approach to improving drug delivery to the ischemic brain and establishes a novel formulation of glyburide that can be potentially translated into clinical applications to improve management of human patients with stroke.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fenyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Hee Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Peng Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Kevin Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
6
|
Guo X, Deng G, Liu J, Zou P, Du F, Liu F, Chen AT, Hu R, Li M, Zhang S, Tang Z, Han L, Liu J, Sheth KN, Chen Q, Gou X, Zhou J. Thrombin-Responsive, Brain-Targeting Nanoparticles for Improved Stroke Therapy. ACS NANO 2018; 12:8723-8732. [PMID: 30107729 DOI: 10.1021/acsnano.8b04787] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current treatments for ischemic stroke are insufficient. The lack of effective pharmacological approaches can be mainly attributed to the difficulty in overcoming the blood-brain barrier. Here, we report a simple strategy to synthesize protease-responsive, brain-targeting nanoparticles for the improved treatment of stroke. The resulting nanoparticles respond to proteases enriched in the ischemic microenvironment, including thrombin or matrix metalloproteinase-9, by shrinking or expanding their size. Targeted delivery was achieved using surface conjugation of ligands that bind to proteins that were identified to enrich in the ischemic brain using protein arrays. By screening a variety of formulations, we found that AMD3100-conjugated, size-shrinkable nanoparticles (ASNPs) exhibited the greatest delivery efficiency. The brain targeting effect is mainly mediated by AMD3100, which interacts with CXCR4 that is enriched in the ischemic brain tissue. We showed that ASNPs significantly enhanced the efficacy of glyburide, a promising stroke therapeutic drug whose efficacy is limited by its toxicity. Due to their high efficiency in penetrating the ischemic brain and low toxicity, we anticipate that ASNPs have the potential to be translated into clinical applications for the improved treatment of stroke patients.
Collapse
Affiliation(s)
| | - Gang Deng
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | | | | | | | | | | | | | | | - Shenqi Zhang
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Zhishu Tang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710021 , China
| | | | - Jie Liu
- Department of Biomedical Engineering, School of Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | | | - Qianxue Chen
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710021 , China
| | | |
Collapse
|
7
|
Daphnetin Protects against Cerebral Ischemia/Reperfusion Injury in Mice via Inhibition of TLR4/NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2816056. [PMID: 28119924 PMCID: PMC5227117 DOI: 10.1155/2016/2816056] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/13/2016] [Indexed: 01/09/2023]
Abstract
Growing evidences indicate that immune-mediated mechanisms contribute to the development of cerebral ischemia/reperfusion (I/R) injury. Daphnetin (DAP) is a coumarin derivative extracted from Daphne odora var., which displays anti-inflammatory properties. However, the effect of DAP on cerebral I/R injury is not yet clear. Recent studies have demonstrated that TLR4/NF-κB signaling pathway takes part in the damaging inflammatory process of cerebral I/R injury. The present study aimed to investigate the effect of DAP on cerebral I/R injury in vivo and its possible mechanisms. DAP was administered before middle cerebral artery occlusion and reperfusion in mice. The neurological scores, cerebral infarct sizes, the levels of inflammatory cytokines, apoptotic neural cells, and the levels of TLR4, NF-κB p65, and IκBα were estimated. The results showed that an obvious improvement of neurological scores and infarct sizes was observed in DAP-treated mice after MCAO/R. DAP treatment decreased the overexpression of TNF-α, IL-1β, and IL-6 and attenuated neural cells apoptosis. Moreover, DAP treatment decreased the TLR4 expression, IκB-α degradation, and nuclear translocation of NF-κB. Taken together, our results suggested that DAP exerted neuroprotective and anti-inflammatory effects on cerebral I/R injury. The potential mechanism was involved in the inhibition of TLR4/NF-κB mediated inflammatory signaling pathway.
Collapse
|
8
|
Han L, Cai Q, Tian D, Kong DK, Gou X, Chen Z, Strittmatter SM, Wang Z, Sheth KN, Zhou J. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1833-1842. [PMID: 27039220 DOI: 10.1016/j.nano.2016.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. Current drug treatment for stroke remains inadequate due to the existence of the blood-brain barrier. We proposed an innovative nanotechnology-based autocatalytic targeting approach, in which the blood-brain barrier modulator lexiscan is encapsulated in nanoparticles to enhance blood-brain barrier permeability and autocatalytically augment the brain stroke-targeting delivery efficiency of chlorotoxin-anchored nanoparticles. The nanoparticles efficiently and specifically accumulated in the brain ischemic microenvironment and the targeting efficiency autocatalytically increased with subsequent administrations. When Nogo-66 receptor antagonist peptide NEP1-40, a potential therapeutic agent for ischemic stroke, was loaded, nanoparticles significantly reduced infarct volumes and enhanced survival. Our findings suggest that the autocatalytic targeting approach is a promising strategy for drug delivery to the ischemic microenvironment inside the brain. Nanoparticles developed in this study may serve as a new approach for the clinical management of stroke.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, Yale University, New Haven, CT, USA; School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qiang Cai
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Derek K Kong
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xingchun Gou
- Department of Neurosurgery, Yale University, New Haven, CT, USA; The laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | | | - Zuoheng Wang
- Division of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Neurology, Yale University, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Cai Q, Xu G, Liu J, Wang L, Deng G, Liu J, Chen Z. A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice. Neuropsychiatr Dis Treat 2016; 12:2851-2858. [PMID: 27843320 PMCID: PMC5098775 DOI: 10.2147/ndt.s118531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the common causes of death and disability in the world. The intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) model is a "gold standard" in surgical ischemic stroke models. Here, we optimized the procedure of this model by ligating on external carotid artery (ECA) stump and two ligatures prepared on internal carotid artery, which could improve the success and survival rate in mice. The results show that ECA approach was superior to common carotid artery approach. Meanwhile, we found that the exposure of pterygopalatine artery was not an essential step for MCAO/R model in mice.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Gang Xu
- Department of Neurosurgery, Xiantao First People's Hospital, Xiantao
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| | - Jun Liu
- Department of Emergency, The Central Hospital of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan
| |
Collapse
|
10
|
Zhang G, Chen L, Yang L, Hua X, Zhou B, Miao Z, Li J, Hu H, Namaka M, Kong J, Xu X. Combined use of spatial restraint stress and middle cerebral artery occlusion is a novel model of post-stroke depression in mice. Sci Rep 2015; 5:16751. [PMID: 26572587 PMCID: PMC4648085 DOI: 10.1038/srep16751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Post stroke depression (PSD) is one of the most common complications of ischemic stroke. At present, the underlying mechanisms are unclear, largely because there are no reliable, valid and reproducible animal models of PSD. Here we report a novel animal model of PSD that displays consistent and reliable clinical features of hemiplegic stroke. The animal model encompasses a combination of the middle cerebral artery occlusion (MCAO) and spatial restraint stress. We found that a 60-minute MCAO followed by spatial restraint stress for 2 h daily for 2 to 4 weeks from the fourth day after MCAO induced PSD-like depressive phenotypes in mice. Importantly, the mice showed exacerbated deficits of neurological functions and decreased body weights, which were accompanied with reduced levels of brain derived neurotrophic factor and neurotransmitters including serotonin and dopamine. In addition, we identified increased levels of serum cortisol in our PSD mice. Finally, we found that mice with PSD were responsive to the tri-cyclic antidepressant imipramine as evidenced by their attenuated depressive behaviors, increased body weights, recovered brain serotonin levels, and decreased serum cortisol levels. This mouse model replicates multiple features of human post-stroke depression and thus provides a new model for the investigation of PSD.
Collapse
Affiliation(s)
- Gaocai Zhang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Li Chen
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Lingli Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xiaodong Hua
- Department of Biochemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Beiqun Zhou
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, 118 Wansheng Street, Suzhou City, China
| | - Hua Hu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Michael Namaka
- College of Pharmacy and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|