1
|
Kissel LT, Pochareddy S, An JY, Sestan N, Sanders SJ, Wang X, Werling DM. Sex-Differential Gene Expression in Developing Human Cortex and Its Intersection With Autism Risk Pathways. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100321. [PMID: 38957312 PMCID: PMC11217612 DOI: 10.1016/j.bpsgos.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Sex-differential biology may contribute to the consistently male-biased prevalence of autism spectrum disorder (ASD). Gene expression differences between males and females in the brain can indicate possible molecular and cellular mechanisms involved, although transcriptomic sex differences during human prenatal cortical development have been incompletely characterized, primarily due to small sample sizes. Methods We performed a meta-analysis of sex-differential expression and co-expression network analysis in 2 independent bulk RNA sequencing datasets generated from cortex of 273 prenatal donors without known neuropsychiatric disorders. To assess the intersection between neurotypical sex differences and neuropsychiatric disorder biology, we tested for enrichment of ASD-associated risk genes and expression changes, neuropsychiatric disorder risk genes, and cell type markers within identified sex-differentially expressed genes (sex-DEGs) and sex-differential co-expression modules. Results We identified 101 significant sex-DEGs, including Y-chromosome genes, genes impacted by X-chromosome inactivation, and autosomal genes. Known ASD risk genes, implicated by either common or rare variants, did not preferentially overlap with sex-DEGs. We identified 1 male-specific co-expression module enriched for immune signaling that is unique to 1 input dataset. Conclusions Sex-differential gene expression is limited in prenatal human cortex tissue, although meta-analysis of large datasets allows for the identification of sex-DEGs, including autosomal genes that encode proteins involved in neural development. Lack of sex-DEG overlap with ASD risk genes in the prenatal cortex suggests that sex-differential modulation of ASD symptoms may occur in other brain regions, at other developmental stages, or in specific cell types, or may involve mechanisms that act downstream from mutation-carrying genes.
Collapse
Affiliation(s)
- Lee T. Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Xuran Wang
- Seaver Autism Center for Research and Treatment, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
2
|
Zhao X, Song L, Yang A, Zhang Z, Zhang J, Yang YT, Zhao XM. Prioritizing genes associated with brain disorders by leveraging enhancer-promoter interactions in diverse neural cells and tissues. Genome Med 2023; 15:56. [PMID: 37488639 PMCID: PMC10364416 DOI: 10.1186/s13073-023-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.
Collapse
Affiliation(s)
- Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Zichao Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, and Department of Neurology of Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai, 200433, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Internatioal Human Phenome Institutes (Shanghai), Shanghai, 200433, China.
| |
Collapse
|
3
|
Liu D, Wu L, Wei H, Zhu C, Tian R, Zhu W, Xu Q. The SFT2D2 gene is associated with the autoimmune pathology of schizophrenia in a Chinese population. Front Neurol 2022; 13:1037777. [PMID: 36619926 PMCID: PMC9810986 DOI: 10.3389/fneur.2022.1037777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background The relative risk of GWAS-confirmed loci strongly associated with schizophrenia may be underestimated due to the decay of linkage disequilibrium between index SNPs and causal variants. This study is aimed to investigate schizophrenia-associated signals detected in the 1q24-25 region in order to identify a causal variant in LD with GWAS index SNPs, and the potential biological functions of the risk gene. Methods Re-genotyping analysis was performed in the 1q24-25 region that harbors three GWAS index SNPs associated with schizophrenia (rs10489202, rs11586522, and rs6670165) in total of 9801 case-control subjects of Chinese Han origin. Circulating autoantibody levels were assessed using an in-house ELISA against a protein derived fragment encoded by SFT2D2 in total of 682 plasma samples. Results A rare variant (rs532193193) in the SFT2D2 locus was identified to be strongly associated with schizophrenia. Compared with control subjects, patients with schizophrenia showed increased anti-SFT2D2 IgG levels. Receiver operating characteristic (ROC) analysis revealed an area under the ROC curve (AUC) of 0.803 with sensitivity of 28.57% against specificity of 95% for the anti-SFT2D2 IgG assay. Discussion Our findings indicate that SFT2D2 is a novel gene for risk of schizophrenia, while endogenous anti-SFT2D2 IgG may underlie the pathophysiology of the immunological aspects of schizophrenia.
Collapse
Affiliation(s)
- Duilin Liu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Wu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Runhui Tian
- Mental Health Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Qi Xu
| |
Collapse
|
4
|
Yun J, Yang H, Li X, Sun H, Xu J, Meng Q, Wu S, Zhang X, Yang X, Li B, Chen R. Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113839. [PMID: 31918133 DOI: 10.1016/j.envpol.2019.113839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Exposure to Aluminum oxide nanoparticles (Al2O3 NPs) has been associated with pulmonary inflammation in recent years; however, the underlying mechanism that causes adverse effects remains unclear. In the present study, we characterized microRNA (miRNA) expression profiling in human bronchial epithelial (HBE) cells exposed to Al2O3 NPs by miRNA microarray. Among the differentially expressed miRNAs, miR-297, a homologous miRNA in Homo sapiens and Mus musculus, was significantly up-regulated following exposure to Al2O3 NPs, compared with that in control. On combined bioinformatic analysis, proteomics analysis, and mRNA microarray, NF-κB-activating protein (NKAP) was found to be a target gene of miR-297 and it was significantly down-regulated in Al2O3 NPs-exposed HBE cells and murine lungs, compared with that in control. Meanwhile, inflammatory cytokines, including IL-1β and TNF-α, were significantly increased in bronchoalveolar lavage fluid (BALF) from mice exposed to Al2O3 NPs. Then we set up a mouse model with intranasal instillation of antagomiR-297 to further confirm that inhibition of miR-297 expression can rescue pulmonary inflammation via Notch pathway suppression. Collectively, our findings suggested that up-regulation of miR-297 expression was an upstream driver of Notch pathway activation, which might be the underlying mechanism involved in lung inflammation induced by exposure to Al2O3 NPs.
Collapse
Affiliation(s)
- Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinwei Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Fu X, Wang J, Du J, Sun J, Baranova A, Zhang F. BDNF Gene's Role in Schizophrenia: From Risk Allele to Methylation Implications. Front Psychiatry 2020; 11:564277. [PMID: 33384622 PMCID: PMC7769935 DOI: 10.3389/fpsyt.2020.564277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Schizophrenia (SZ) is a severe chronic mental disorder with complex genetic mechanisms. Brain-derived neurotrophic factor (BDNF) is one of promising candidate genes for SZ, and rs6265 is a non-synonymous single nucleotide polymorphism (SNP) in BDNF. Methods: In this study, we performed a case-control association study of rs6265 in a cohort of Han Chinese population from eastern China, including 1,407 SZ patients and 1,136 healthy controls; and carried out a cis-mQTL (Methylation Quantitative Trait Loci) analysis for BDNF rs6265. Results: We found a positive association of rs6265 with SZ (P = 0.037), with the minor allele (A) of rs6265 conferring a protecting effect for SZ (OR = 0.89). Furthermore, cis-mQTL analysis indicates that rs6265 is associated with several methylation loci surrounding BDNF. Conclusions: Together, our findings provide further evidence to support the involvement of BDNF gene in the genesis of SZ.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianbin Du
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Perdomo-Sabogal Á, Nowick K. Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local Adaptation and Disease. Genome Biol Evol 2019; 11:2178-2193. [PMID: 31228201 PMCID: PMC6685493 DOI: 10.1093/gbe/evz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Differences in gene regulation have been suggested to play essential roles in the evolution of phenotypic changes. Although DNA changes in cis-regulatory elements affect only the regulation of its corresponding gene, variations in gene regulatory factors (trans) can have a broader effect, because the expression of many target genes might be affected. Aiming to better understand how natural selection may have shaped the diversity of gene regulatory factors in human, we assembled a catalog of all proteins involved in controlling gene expression. We found that at least five DNA-binding transcription factor classes are enriched among genes located in candidate regions for selection, suggesting that they might be relevant for understanding regulatory mechanisms involved in human local adaptation. The class of KRAB-ZNFs, zinc-finger (ZNF) genes with a Krüppel-associated box, stands out by first, having the most genes located on candidate regions for positive selection. Second, displaying most nonsynonymous single nucleotide polymorphisms (SNPs) with high genetic differentiation between populations within these regions. Third, having 27 KRAB-ZNF gene clusters with high extended haplotype homozygosity. Our further characterization of nonsynonymous SNPs in ZNF genes located within candidate regions for selection, suggests regulatory modifications that might influence the expression of target genes at population level. Our detailed investigation of three candidate regions revealed possible explanations for how SNPs may influence the prevalence of schizophrenia, eye development, and fertility in humans, among other phenotypes. The genetic variation we characterized here may be responsible for subtle to rough regulatory changes that could be important for understanding human adaptation.
Collapse
Affiliation(s)
- Álvaro Perdomo-Sabogal
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| | - Katja Nowick
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| |
Collapse
|
7
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
8
|
Yang J, Yan B, Fan Y, Yang L, Zhao B, Zhu F, Zheng J, Wang W, Bai L, Zhang F, Ma X. Identification of schizophrenia related biological pathways across eight brain regions. Behav Brain Res 2019; 360:1-6. [DOI: 10.1016/j.bbr.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023]
|
9
|
Association of NKAPL, TSPAN18, and MPC2 gene variants with schizophrenia based on new data and a meta-analysis in Han Chinese. Acta Neuropsychiatr 2017; 29:87-94. [PMID: 27460766 DOI: 10.1017/neu.2016.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is suggested to be a complex polygenetic disorder with high heritability. Genome-wide association studies have found that the rs1635, rs11038167, and rs10489202 polymorphisms are associated with SZ in Han Chinese. However, results of validation studies are inconsistent. This study aimed to test the association between the NKAPL rs1635, TSPAN18 rs11038167, and MPC2 rs10489202 polymorphisms and SZ in a Chinese population. METHODS This study contained 700 unrelated SZ patients (300 Zhuang and 400 Han) and 700 gender- and age-matched controls (300 Zhuang and 400 Han). The polymorphisms in TSPAN18 (rs11038167), NKAPL (rs1635), and MPC2 (rs10489202) were genotyped using the Sequenom MassARRAY method. Statistical analyses were performed with PLINK program and SPSS l6.0 for Windows. STATA11.1 was used for meta-analysis. RESULTS No statistically significant difference was found in different allele and genotype frequencies of rs1635, rs11038167, and rs10489202 between SZ cases and controls of Zhuang and Han ethnicities and the total samples (all p>0.05). Further meta-analysis suggested that single-nucleotide polymorphism rs10489202 was significantly associated with SZ in a Han Chinese population (p OR=0.002). CONCLUSIONS Our case-control study failed to validate the significant association of NKAPL rs1635, TSPAN18 rs11038167, and MPC2 rs10489202 polymorphisms with SZ susceptibility in the southern Zhuang or Han Chinese population. However, meta-analysis showed a significant association between MPC2 variant rs10489202 and SZ susceptibility in Han Chinese.
Collapse
|
10
|
Association between NF-κB Pathway Gene Variants and sICAM1 Levels in Taiwanese. PLoS One 2017; 12:e0169516. [PMID: 28095483 PMCID: PMC5240939 DOI: 10.1371/journal.pone.0169516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
Intercellular adhesion molecule–1 (ICAM1) is crucial to the development and progression of atherosclerosis. Recent genome-wide association studies (GWAS) have revealed that single nucleotide polymorphisms (SNPs) in two of the nuclear factor-κB (NF-κB) pathway genes, NFKBIK and RELA, are associated with soluble ICAM1 (sICAM1) levels. However, neither of these two gene variants is found in the Asian populations. This study aimed to elucidate whether other candidate gene variants involved in the NF-κB pathway may be associated with sICAM1 levels in Taiwanese. After excluding carriers of the ICAM1 rs5491-T allele, three SNPs in the ICAM1 gene and eight SNPs in six of the NF-κB pathway genes (NFKB1, PDCD11, TNFAIP3, NKAPL, IKBKE, and PRKCB) were analyzed for their association with sICAM1 levels in 480 individuals. Our data showed that two SNPs, rs5498 of ICAM1 and rs1635 of NKAPL, were significantly associated with sICAM1 levels (P = 0.002 and 0.004, respectively) in the Taiwanese population. Using a multivariate analysis, rs5498 and rs1635 as well as the previously reported ABO genotypes and rs12051272 of the CDH13 gene were independently associated with sICAM1 levels (P = 0.001, 0.001, 0.006 and 0.031, respectively). An analysis with combined risk alleles of four candidate SNPs in the ICAM1, NKAPL, ABO, and CDH13 genes showed an increase in sICAM1 levels with added numbers of risk alleles and weighted genetic risk score. Our findings thus expanded the repertoire of gene variants responsible for the regulation of sICAM1 levels in the Asian populations.
Collapse
|
11
|
Xiao X, Li M. Replication of Han Chinese GWAS loci for schizophrenia via meta-analysis of four independent samples. Schizophr Res 2016; 172:75-7. [PMID: 26899211 DOI: 10.1016/j.schres.2016.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 01/14/2023]
Abstract
Schizophrenia is a highly heritable psychiatric disorder with unclear aetiology. Recent genome-wide association studies (GWAS) in European populations have reported numerous susceptibility variants, while GWAS in East Asians also identified several risk loci but with fewer independent replications. Here we focus on nine single nucleotide polymorphisms (SNPs) which have shown genome-wide significant associations with schizophrenia in previous Han Chinese GWAS, and we tend to replicate the associations in four independent samples of East Asian origin including a total of 3977 cases and 5589 controls. The results showed that rs10489202 in MPC2 (BRP44) is significantly associated with schizophrenia in these East Asian replication samples (one-tailed P=5.75×10(-3), OR=1.12), and further meta-analysis after including previous GWAS data yielded a genome-wide significant association (two-tailed P=1.11×10(-10), OR=1.19), adding further support for the involvement of this locus in the genetic risk of schizophrenia, and future studies regarding the underlying molecular mechanisms of the risk association are necessary.
Collapse
Affiliation(s)
- Xiao Xiao
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| | - Ming Li
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|