1
|
Szlepák T, Kossev AP, Csabán D, Illés A, Udvari S, Balicza P, Borsos B, Takáts A, Klivényi P, Molnár MJ. GBA-associated Parkinson's disease in Hungary: clinical features and genetic insights. Neurol Sci 2024; 45:2671-2679. [PMID: 38153678 PMCID: PMC11082009 DOI: 10.1007/s10072-023-07213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) has a complex genetic background involving both rare and common genetic variants. Although a small percentage of cases show a clear Mendelian inheritance pattern, it is much more relevant to identify patients who present with a complex genetic profile of risk variants with different severity. The ß-glucocerebrosidase coding gene (GBA1) is recognized as the most frequent genetic risk factor for PD and Lewy body dementia, irrespective of reduction of the enzyme activity due to genetic variants. METHODS In a selected cohort of 190 Hungarian patients with clinical signs of PD and suspected genetic risk, we performed the genetic testing of the GBA1 gene. As other genetic hits can modify clinical features, we also screened for additional rare variants in other neurodegenerative genes and assessed the APOE-ε genotype of the patients. RESULTS In our cohort, we identified 29 GBA1 rare variant (RV) carriers. Out of the six different detected RVs, the highly debated E365K and T408M variants are composed of the majority of them (22 out of 32). Three patients carried two GBA1 variants, and an additional three patients carried rare variants in other neurodegenerative genes (SMPD1, SPG11, and SNCA). We did not observe differences in age at onset or other clinical features of the patients carrying two GBA1 variants or patients carrying heterozygous APOE-ε4 allele. CONCLUSION We need further studies to better understand the drivers of clinical differences in these patients, as this could have important therapeutic implications.
Collapse
Affiliation(s)
- Tamás Szlepák
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- HUN-REN, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| | - Annabel P Kossev
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Dóra Csabán
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Anett Illés
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Szabolcs Udvari
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Péter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- HUN-REN, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| | - Beáta Borsos
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Annamária Takáts
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Mária J Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary.
- HUN-REN, Multiomic Neurodegeneration Research Group, Budapest, Hungary.
| |
Collapse
|
2
|
Maple-Grødem J, Paul KC, Dalen I, Ngo KJ, Wong D, Macleod AD, Counsell CE, Bäckström D, Forsgren L, Tysnes OB, Kusters CDJ, Fogel BL, Bronstein JM, Ritz B, Alves G. Lack of Association Between GBA Mutations and Motor Complications in European and American Parkinson's Disease Cohorts. JOURNAL OF PARKINSONS DISEASE 2021; 11:1569-1578. [PMID: 34275908 PMCID: PMC8609705 DOI: 10.3233/jpd-212657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Motor complications are a consequence of the chronic dopaminergic treatment of Parkinson’s disease (PD) and include levodopa-induced dyskinesia (LIDs) and motor fluctuations (MF). Currently, evidence is on lacking whether patients with GBA-associated PD differ in their risk of developing motor complications compared to the general PD population. Objective: To evaluate the association of GBA carrier status with the development of LIDS and MFs from early PD. Methods: Motor complications were recorded prospectively in 884 patients with PD from four longitudinal cohorts using part IV of the UPDRS or MDS-UPDRS. Subjects were followed for up to 11 years and the associations of GBA mutations with the development of motor complications were assessed using parametric accelerated failure time models. Results: In 439 patients from Europe, GBA mutations were detected in 53 (12.1%) patients and a total of 168 cases of LIDs and 258 cases of MF were observed. GBA carrier status was not associated with the time to develop LIDs (HR 0.78, 95%CI 0.47 to 1.26, p = 0.30) or MF (HR 1.19, 95%CI 0.84 to 1.70, p = 0.33). In the American cohorts, GBA mutations were detected in 36 (8.1%) patients and GBA carrier status was also not associated with the progression to LIDs (HR 1.08, 95%CI 0.55 to 2.14, p = 0.82) or MF (HR 1.22, 95%CI 0.74 to 2.04, p = 0.43). Conclusion: This study does not provide evidence that GBA-carrier status is associated with a higher risk of developing motor complications. Publication of studies with null results is vital to develop an accurate summary of the clinical features that impact patients with GBA-associated PD.
Collapse
Affiliation(s)
- Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ingvild Dalen
- Department of Research, Section of Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - Kathie J Ngo
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Darice Wong
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.,Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angus D Macleod
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Carl E Counsell
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.,Department of Neurology, and Department of Neuroscience, Yale University School of Medicine, CT, USA
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Cynthia D J Kusters
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.,Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.,Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.,Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
3
|
Gene variants and expression changes of SIRT1 and SIRT6 in peripheral blood are associated with Parkinson's disease. Sci Rep 2021; 11:10677. [PMID: 34021216 PMCID: PMC8140123 DOI: 10.1038/s41598-021-90059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by complex interaction between genetic and environmental factors. There is a growing body of evidence of the involvement of sirtuins (SIRTs) in disease pathomechanism. SIRTs are NAD+-dependent histone deacetylases which take part in various cellular functions. However, available data of the relationship between SIRT gene polymorphisms and PD is limited. Our aim was to investigate the possible association of 10 SNPs identified within non-mitochondrial SIRTs, SIRT1, -2 and -6 with the risk of PD in Hungarian population, and to compare the expression level of these SIRTs between healthy controls and PD patients. Our results showed that rs3740051 and rs3818292 of SIRT1 and rs350843, rs350844, rs107251, rs350845 and rs350846 of SIRT6 show weak association with PD risk. On the contrary rs12778366 and rs3758391 of SIRT1 and rs10410544 of SIRT2 did not show association with PD. Moreover, we detected that mRNA level of SIRT1 was down-regulated, and mRNA level of SIRT6 was up-regulated, while SIRT2 mRNA level was not altered in the peripheral blood of PD patients as compared to controls. The difference in both cases was more pronounced when comparing the early-onset PD group to the control cohort. Nevertheless, mRNA level changes did not show any association with the presence of any of the investigated SNPs either in the PD or in the control group. In conclusion, our findings suggest that non-mitochondrial sirtuins, SIRT1 and -6 but not SIRT2 might contribute to the pathogenesis of PD in the Hungarian population both via their altered mRNA levels and via gene alterations identified as specific SNPs.
Collapse
|
4
|
Maple-Grødem J, Dalen I, Tysnes OB, Macleod AD, Forsgren L, Counsell CE, Alves G. Association of GBA Genotype With Motor and Functional Decline in Patients With Newly Diagnosed Parkinson Disease. Neurology 2020; 96:e1036-e1044. [PMID: 33443131 PMCID: PMC8055329 DOI: 10.1212/wnl.0000000000011411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
Objective To establish the significance of glucocerebrosidase gene (GBA) carrier status on motor impairment in a large cohort of patients with incident Parkinson disease (PD). Methods Three European population-based studies followed 528 patients with PD from diagnosis. A total of 440 with genomic DNA from baseline were assessed for GBA variants. We evaluated motor and functional impairment annually using the Unified Parkinson’s Disease Rating Scale (UPDRS) motor and activities of daily living (ADL) sections. Differential effects of classes of GBA variants on disease progression were evaluated using mixed random and fixed effects models. Results A total of 387 patients with idiopathic disease (age at baseline 70.3 ± 9.5 years; 60.2% male) and 53 GBA carriers (age at baseline 66.8 ± 10.1 years; 64.2% male) were included. The motor profile of the groups was clinically indistinguishable at diagnosis. GBA carriers showed faster annual increase in UPDRS scores measuring ADL (1.5 point per year, 95% confidence interval [CI] 1.1–2.0) and motor symptoms (2.2 points per year, 95% CI 1.3–3.1) compared to noncarriers (ADL, 1.0 point per year, 95% CI 0.9–1.1, p = 0.003; motor, 1.3 point per year, 95% CI 1.1–1.6, p = 0.007). Simulations of clinical trial designs showed that recruiting only GBA carriers can reduce trial size by up to 65% compared to a trial recruiting all patients with PD. Conclusion GBA variants are linked to a more aggressive motor disease course over 7 years from diagnosis in patients with PD. A better understanding of PD progression in genetic subpopulations may improve disease management and has direct implications for improving the design of clinical trials.
Collapse
Affiliation(s)
- Jodi Maple-Grødem
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden.
| | - Ingvild Dalen
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden
| | - Ole-Bjørn Tysnes
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden
| | - Angus D Macleod
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden
| | - Lars Forsgren
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden
| | - Carl E Counsell
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden
| | - Guido Alves
- From The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Department of Research, Section of Biostatistics (I.D.), and Department of Neurology (G.A.), Stavanger University Hospital; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A.), University of Stavanger; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; Institute of Applied Health Sciences (A.D.M., C.E.C.), University of Aberdeen, UK; and Department of Clinical Science, Neurosciences (L.F.), Umeå University, Sweden
| |
Collapse
|
5
|
Sassone J, Reale C, Dati G, Regoni M, Pellecchia MT, Garavaglia B. The Role of VPS35 in the Pathobiology of Parkinson's Disease. Cell Mol Neurobiol 2020; 41:199-227. [PMID: 32323152 DOI: 10.1007/s10571-020-00849-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
The vacuolar protein sorting 35 (VPS35) gene located on chromosome 16 has recently emerged as a cause of late-onset familial Parkinson's disease (PD) (PARK17). The gene encodes a 796-residue protein nearly ubiquitously expressed in human tissues. The protein localizes on endosomes where it assembles with other peripheral membrane proteins to form the retromer complex. How VPS35 mutations induce dopaminergic neuron degeneration in humans is still unclear. Because the retromer complex recycles the receptors that mediate the transport of hydrolase to lysosome, it has been suggested that VPS35 mutations lead to impaired lysosomal and autophagy function. Recent studies also demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis, suggesting that VPS35 mutations elicit mitochondrial dysfunction. More recent studies have identified a key role of VPS35 in neurotransmission, whilst others reported a functional interaction between VPS35 and other genes associated with familial PD, including α-SYNUCLEIN-PARKIN-LRRK2. Here, we review the biological role of VPS35 protein, the VPS35 mutations identified in human PD patients, and the potential molecular mechanism by which VPS35 mutations can induce progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Dati
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
6
|
A Meta-Analysis of GBA-Related Clinical Symptoms in Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:3136415. [PMID: 30363648 PMCID: PMC6180987 DOI: 10.1155/2018/3136415] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Background GBA gene had been proved to be a crucial gene to the risk of PD. Numerous studies had discussed about the unique clinical characteristics of PD patients with GBA carriers (GBA + PD). However, there was lack of updated comprehensive analysis on the topic. In order to clarify the association between GBA variants and the clinical phenotypes of PD, we conducted this comprehensive meta-analysis. Method Medline, Embase, and Cochrane were used to perform the searching. Strict selection criteria were followed in screening for new published articles or data. Revman 5.3 software was applied to perform the total statistical analysis, and funnel plots in the software were used to assess the publication biases. Results A total of 26 articles including 931 GBA + PD and 14861 GBA noncarriers of PD (GBA - PD) were involved in the final meta-analysis, and 14 of them were either newly added publications or related data newly analyzed compared with the version published in 2015. Then, a series of symptoms containing depression, orthostatic hypotension, motor fluctuation, wearing-off, and freezing were newly analyzed due to more articles eligible. Besides, clinical features like family history, AAO, UPDRS-III, H-Y, and dementia previously analyzed were updated with new data added. Significant statistical differences were found in wearing-off, family history, AAO, UPDRS-III, and dementia (OR: 1.14, 1.65; MD: -3.61, 2.17; OR: 2.44; p: 0.03, <0.00001, <0.00001, 0.003, and <0.00001). Depression was slightly associated with GBA + PD (OR: 1.47; p: 0.04). Clinical symptoms such as H-Y, orthostatic hypotension, motor fluctuation, and freezing did not feature GBA + PD. Conclusion Our results demonstrated that there were unique clinical features in GBA + PD which can help the management of the whole duration of PD patients.
Collapse
|
7
|
Lunde KA, Chung J, Dalen I, Pedersen KF, Linder J, Domellöf ME, Elgh E, Macleod AD, Tzoulis C, Larsen JP, Tysnes OB, Forsgren L, Counsell CE, Alves G, Maple-Grødem J. Association of glucocerebrosidase polymorphisms and mutations with dementia in incident Parkinson's disease. Alzheimers Dement 2018; 14:1293-1301. [PMID: 29792872 DOI: 10.1016/j.jalz.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Both polymorphisms and mutations in glucocerebrosidase (GBA) may influence the development of dementia in patients with Parkinson's disease. METHODS Four hundred forty-two patients and 419 controls were followed for 7 years. Dementia was diagnosed using established criteria. Participants were analyzed for GBA genetic variants, including E326K, T369M, and L444P. Associations between GBA carrier status and dementia were assessed with Cox survival analysis. RESULTS A total of 12.0% of patients with Parkinson's disease carried a GBA variant, and nearly half (22/53) of them progressed to dementia during follow-up. Carriers of deleterious GBA mutations (adjusted hazard ratio 3.81, 95% confidence interval 1.35 to 10.72; P = .011) or polymorphisms (adjusted hazard ratio 1.79; 95% confidence interval 1.07 to 3.00; P = .028) progressed to dementia more rapidly than noncarriers. DISCUSSION GBA variants are of great clinical relevance for the development of dementia in Parkinson's disease, especially due to the relatively higher frequency of these alleles compared with other risk alleles.
Collapse
Affiliation(s)
- Kristin Aaser Lunde
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Janete Chung
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Ingvild Dalen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Kenn Freddy Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jan Linder
- Department of Pharmacology and Clinical Neuroscience, Neurology, Umeå University, Umeå, Sweden
| | - Magdalena E Domellöf
- Department of Pharmacology and Clinical Neuroscience, Neurology, Umeå University, Umeå, Sweden; Department of Psychology, Umeå University, Umeå, Sweden
| | - Eva Elgh
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Angus D Macleod
- Institute of Applied Health Sciences, Polwarth Building, University of Aberdeen, Aberdeen, UK
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jan Petter Larsen
- Network for Medical Sciences, University of Stavanger, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Forsgren
- Department of Pharmacology and Clinical Neuroscience, Neurology, Umeå University, Umeå, Sweden
| | - Carl E Counsell
- Institute of Applied Health Sciences, Polwarth Building, University of Aberdeen, Aberdeen, UK
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Department of Neurology, Stavanger University Hospital, Stavanger, Norway; Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway; Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
8
|
The rs13388259 Intergenic Polymorphism in the Genomic Context of the BCYRN1 Gene Is Associated with Parkinson's Disease in the Hungarian Population. PARKINSONS DISEASE 2018; 2018:9351598. [PMID: 29850016 PMCID: PMC5903343 DOI: 10.1155/2018/9351598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, and muscle rigidity. To date, approximately 50 genes have been implicated in PD pathogenesis, including both Mendelian genes with rare mutations and low-penetrance genes with common polymorphisms. Previous studies of low-penetrance genes focused on protein-coding genes, and less attention was given to long noncoding RNAs (lncRNAs). In this study, we aimed to investigate the susceptibility roles of lncRNA gene polymorphisms in the development of PD. Therefore, polymorphisms (n=15) of the PINK1-AS, UCHL1-AS, BCYRN1, SOX2-OT, ANRIL and HAR1A lncRNAs genes were genotyped in Hungarian PD patients (n=160) and age- and sex-matched controls (n=167). The rare allele of the rs13388259 intergenic polymorphism, located downstream of the BCYRN1 gene, was significantly more frequent among PD patients than control individuals (OR = 2.31; p=0.0015). In silico prediction suggested that this polymorphism is located in a noncoding region close to the binding site of the transcription factor HNF4A, which is a central regulatory hub gene that has been shown to be upregulated in the peripheral blood of PD patients. The rs13388259 polymorphism may interfere with the binding affinity of transcription factor HNF4A, potentially resulting in abnormal expression of target genes, such as BCYRN1.
Collapse
|
9
|
Zhang Y, Shu L, Sun Q, Zhou X, Pan H, Guo J, Tang B. Integrated Genetic Analysis of Racial Differences of Common GBA Variants in Parkinson's Disease: A Meta-Analysis. Front Mol Neurosci 2018. [PMID: 29527153 PMCID: PMC5829555 DOI: 10.3389/fnmol.2018.00043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Numerous studies have indicated that there is a possible relationship between GBA variants and Parkinson's disease (PD), however, most of them focused on a few variants such as L444P, N370S. We performed a comprehensive pooled analysis to clarify the relationship between variations of GBA and the risk of PD in different racial groups. Methods: Standard meta-analysis was conducted, including generating inclusion and exclusion criteria, searching literature, extracting and analyzing data. Results: Fifty studies containing 20,267 PD patients and 24,807 controls were included. We found that variants 84insGG, IVS2+1G>A, R120W, H255Q, E326K, T369M, N370S, D409H, L444P, R496H and RecNciI increased the risk of PD in total populations (OR: 1.78–10.49; p: <0.00001, 0.00005, 0.0008, 0.005, <0.00001, 0.004, <0.00001, 0.0003, <0.00001, <0.0001, 0.0001). In subgroup analysis by ethnicity, in AJ populations, variants 84insGG, R496H, N370S increased the risk of PD (OR: 9.26–3.51; p: <0.00001, <0.0001, <0.00001). In total non-AJ populations, variants L444P, R120W, IVS2+1G>A, H255Q, N370S, D409H, RecNciI, E326K, T369M increased the risk of PD (OR: 8.66–1.89; p: <0.00001, 0.0008, 0.02, 0.005, <0.00001, 0.001, 0.0001, <0.00001, 0.002). Among the non-AJ populations, pooled analysis from five different groups were done separately. Variants L444P, N370S, H255Q, D409H, RecNciI, E326K increased risk of PD (OR: 6.52–1.84; p: <0.00001, <0.00001, 0.005, 0.005, 0.04, <0.00001) in European/West Asians while R120W and RecNciI in East Asians (OR: 14.93, 3.56; p: 0.001, 0.003). L444P increased the risk of PD in Hispanics, East Asians and Mixed populations (OR: 15.44, 12.43, 7.33; p: 0.00004, <0.00001, 0.009). Lacking of enough original studies, we failed to conduct quantitative analysis in Africa. Conclusions: Obvious racial differences were found for GBA variants in PD. 84insGG and R496H exclusively increased PD risks in AJ populations, so did L444P, R120W, IVS2+1G>A, H255Q, D409H, RecNciI, E326K, T369M in non-AJ populations. N370S increased the risk of PD in both ethnics. In non-AJ subgroup populations, N370S, H255Q, D409H, E326K exclusively increased PD risks in European/West Asians, as were R120W in East Asians. L444P increased the risk of PD in all groups in non-AJ ethnicity. These results will contribute to the future genetic screening of GBA gene in PD.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
10
|
Chen YF, Chang YY, Lan MY, Chen PL, Lin CH. Identification of VPS35 p.D620N mutation-related Parkinson's disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: a case report and literature review. BMC Neurol 2017; 17:191. [PMID: 28985717 PMCID: PMC5639586 DOI: 10.1186/s12883-017-0972-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 12/01/2022] Open
Abstract
Background Vacuolar protein sorting 35 (VPS35) was recently reported to be a genetic cause for late-onset autosomal dominant Parkinson’s disease (PD). However, VPS35 mutations are rarely reported in Asian populations. Herein, we report the first Taiwanese family with the pathogenic VPS35 p.D620N mutation, including one patient treated successfully with subthalamic nucleus deep brain stimulation (STN-DBS). Case presentation A 61-year-old woman presented with progressive left hand resting tremor at the age of 42. Neurological examinations revealed mask face and akinetic-rigidity over left extremities. She showed a good response to levodopa treatment, and her unified Parkinson’s disease rating scale (UPDRS) motor scores improved from 42 to 15 under the levodopa equivalent dose of 1435 mg/day. She developed peak-dose dyskinesia and motor fluctuation seven years after the onset of symptoms, and received bilateral STN-DBS at the age of 55. Stimulation led to a marked improvement in her motor symptoms with a 37% improvement in the UPDRS motor score during the OFF period five years after surgery. The patient’s mother and three siblings were also diagnosed with PD in their forties, following an autosomal-dominant inheritance pattern. We performed genetic analysis of the proband using a targeted next generation sequencing (NGS) panel covering 17 known PD-causative genes. We identified a pathogenic missense mutation in VPS35 gene, c.1858G > A (p.D620N), in this patient. Conclusions This is the first report of the VPS35 p.D620N mutation in a Taiwanese family. Additionally, our report contributes to the current understanding of genetically defined PD patients treated successfully with STN-DBS.
Collapse
Affiliation(s)
- Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Hsien Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
11
|
Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA Analysis in Next-Generation Era: Pitfalls, Challenges, and Possible Solutions. J Mol Diagn 2017; 19:733-741. [PMID: 28727984 DOI: 10.1016/j.jmoldx.2017.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in the gene encoding the lysosomal enzyme acid β-glucosidase (GBA) are responsible for Gaucher disease and represent the main genetic risk factor for developing Parkinson disease. In past years, next-generation sequencing (NGS) technology has been applied for the molecular analysis of the GBA gene, both as a single gene or as part of gene panels. However, the presence of complex gene-pseudogene rearrangements, resulting from the presence of a highly homologous pseudogene (GBAP1) located downstream of the GBA gene, makes NGS analysis of GBA challenging. Therefore, adequate strategies should be adopted to avoid misdetection of GBA recombinant mutations. Here, we validated a strategy for the identification of GBA mutations using parallel massive sequencing and provide an overview of the major drawbacks encountered during GBA analysis by NGS. We implemented a NGS workflow, using a set of 38 patients with Gaucher disease carrying different GBA alleles identified previously by Sanger sequencing. As expected, the presence of the pseudogene significantly affected data output. However, the combination of specific procedures for the library preparation and data analysis resulted in maximal repeatability and reproducibility, and a robust performance with 97% sensitivity and 100% specificity. In conclusion, the pipeline described here represents a useful approach to deal with GBA sequencing using NGS technology.
Collapse
Affiliation(s)
- Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| |
Collapse
|
12
|
Barkhuizen M, Anderson DG, Grobler AF. Advances in GBA-associated Parkinson's disease--Pathology, presentation and therapies. Neurochem Int 2015; 93:6-25. [PMID: 26743617 DOI: 10.1016/j.neuint.2015.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Abstract
GBA mutations are to date the most common genetic risk factor for Parkinson's disease. The GBA gene encodes the lysomal hydrolase glucocerebrosidase. Whilst bi-allelic GBA mutations cause Gaucher disease, both mono- and bi-allelic mutations confer risk for Parkinson's disease. Clinically, Parkinson's disease patients with GBA mutations resemble idiopathic Parkinson's disease patients. However, these patients have a modest reduction in age-of-onset of disease and a greater incidence of cognitive decline. In some cases, GBA mutations are also responsible for familial Parkinson's disease. The accumulation of α-synuclein into Lewy bodies is the central neuropathological hallmark of Parkinson's disease. Pathologic GBA mutations reduce enzymatic function. A reduction in glucocerebrosidase function increases α-synuclein levels and propagation, which in turn inhibits glucocerebrosidase in a feed-forward cascade. This cascade is central to the neuropathology of GBA-associated Parkinson's disease. The lysosomal integral membrane protein type-2 is necessary for normal glucocerebrosidase function. Glucocerebrosidase dysfunction also increases in the accumulation of β-amyloid and amyloid-precursor protein, oxidative stress, neuronal susceptibility to metal ions, microglial and immune activation. These factors contribute to neuronal death. The Mendelian Parkinson's disease genes, Parkin and ATP13A2, intersect with glucocerebrosidase. These factors sketch a complex circuit of GBA-associated neuropathology. To clinically interfere with this circuit, central glucocerebrosidase function must be improved. Strategies based on reducing breakdown of mutant glucocerebrosidase and increasing the fraction that reaches the lysosome has shown promise. Breakdown can be reduced by interfering with the ability of heat-shock proteins to recognize mutant glucocerebrosidase. This underlies the therapeutic efficacy of certain pharmacological chaperones and histone deacetylase inhibitors. These therapies are promising for Parkinson's disease, regardless of mutation status. Recently, there has been a boom in studies investigating the role of glucocerebrosidase in the pathology of Parkinson's disease. This merits a comprehensive review of the current cell biological processes and pathological pictures involving Parkinson's disease associated with GBA mutations.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa; Department of Paediatrics, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229, The Netherlands.
| | - David G Anderson
- Department of Neurology, Witwatersrand University Donald Gordon Medical Centre, Parktown, Johannesburg, 2193, South Africa
| | - Anne F Grobler
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|