1
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
2
|
Zhou C, Routh VH. Thioredoxin-1 Overexpression in the Ventromedial Nucleus of the Hypothalamus Preserves the Counterregulatory Response to Hypoglycemia During Type 1 Diabetes in Male Rats. Diabetes 2018; 67:120-130. [PMID: 29079703 PMCID: PMC5741147 DOI: 10.2337/db17-0930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Abstract
We previously showed that the glutathione precursor, N-acetylcysteine (NAC), prevented hypoglycemia-associated autonomic failure (HAAF) and impaired activation of ventromedial hypothalamus (VMH) glucose-inhibited (GI) neurons by low glucose after recurrent hypoglycemia (RH) in nondiabetic rats. However, NAC does not normalize glucose sensing by VMH GI neurons when RH occurs during diabetes. We hypothesized that recruiting the thioredoxin (Trx) antioxidant defense system would prevent HAAF and normalize glucose sensing after RH in diabetes. To test this hypothesis, we overexpressed Trx-1 (cytosolic form of Trx) in the VMH of rats with streptozotocin (STZ)-induced type 1 diabetes. The counterregulatory response (CRR) to hypoglycemia in vivo and the activation of VMH GI neurons in low glucose using membrane potential sensitive dye in vitro was measured before and after RH. VMH Trx-1 overexpression normalized both the CRR and glucose sensing by VMH GI neurons in STZ rats. VMH Trx-1 overexpression also lowered the insulin requirement to prevent severe hyperglycemia in STZ rats. However, like NAC, VMH Trx-1 overexpression did not prevent HAAF or normalize activation of VMH GI neurons by low glucose in STZ rats after RH. We conclude that preventing HAAF in type 1 diabetes may require the recruitment of both antioxidant systems.
Collapse
Affiliation(s)
- Chunxue Zhou
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
3
|
Kiba T. Gene Expression Analysis in Rat Pancreas Observed with Whole-Transcript Exon Array after Ventromedial Hypothalamic Lesions. Ann Neurosci 2017; 24:26-31. [PMID: 28588355 DOI: 10.1159/000464420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It was reported previously that using Affymetrix Rat Genome 230 2.0, one of a class of standard 3' based arrays, ventromedial hypothalamic (VMH) lesions affected the expressions of cell proliferation-related genes, neuron-related genes, and metabolism-related genes. The released Affymetrix Rat Gene 1.0 ST array has 2 major differences compared with standard 3' based arrays, including Rat Genome 230 2.0: it interrogates the entire mRNA transcript and uses DNA targets. PURPOSE This study is aimed at assessing the impact of these differences on the array performance. METHODS The study used Rat Gene 1.0 ST array, one of a class of whole-transcript rat exon arrays to examine the cellular mechanisms of gene regulation in the rat pancreas after VMH lesions. RESULTS Although the results showed that VMH lesions regulated genes involved in enzymes, metabolism, transport, binding differentiation, migration, morphology, apoptosis, neuron and immunity, the probes identified by these 2 arrays were remarkably different. CONCLUSION This study also confirmed that VMH lesions may affect the expression of many functional genes in rat pancreas.
Collapse
Affiliation(s)
- Takayoshi Kiba
- Division of Modern Medical Technology, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| |
Collapse
|