1
|
Balezina OP, Tarasova EO, Bogacheva PO. Myogenic Classical Endocannabinoids, Their Targets and Activity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1759-1778. [PMID: 39523114 DOI: 10.1134/s0006297924100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
This review focuses on the recently discovered specific action of two classical endocannabinoids (ECs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA), in the case of their synthesis and degradation in skeletal muscles; in other words, this review is dedicated to properties and action of the myoendocannabinoid (myoEC) pool. Influence of this pool is considered at three different levels: at the level of skeletal muscles, motor synapses, and also at the level of the whole organism, including central nervous system. Special attention is paid to the still significantly underestimated and intriguing ability of ECs to have positive effect on energy exchange and contractile activity of muscle fibers, as well as on transmitter secretion in motor synapses. Role of muscle contractions in regulation of activity balance between the enzymes catalyzing synthesis and degradation of myoECs and, therefore, in the release of myoECs and exertion of their specific effects is thoroughly considered. Increasingly popular hypotheses about the prominent role of myoECs (AEA and/or 2-AG) in the rise of the overall level of ECs in the blood during muscle exercise and the development of "runner's high" and about the role of myoECs in the correction of a number of psychophysiological conditions (pain syndrome, stress, etc.) are discussed here. Thus, this review presents information about the myoEC pool from a totally new viewpoint, underlining its possible independent and non-trivial regulatory role in the body, in contrast to the traditional and well-known activity of neurogenic ECs.
Collapse
Affiliation(s)
- Olga P Balezina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Polina O Bogacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
2
|
Kuramoto H, Yabe M, Morishita R, Yoshimura R, Sakamoto H. Localization of sensory nerve terminals containing calcitonin gene-related peptide (CGRP) on striated muscle fibers in the rat esophagus: Evidence for triple innervation via motor endplates. Auton Neurosci 2024; 253:103177. [PMID: 38636284 DOI: 10.1016/j.autneu.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.
Collapse
Affiliation(s)
- Hirofumi Kuramoto
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Mana Yabe
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ryo Morishita
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Hiroshi Sakamoto
- Department of Physical Therapy, Health Science University, Yamanashi 401-0380, Japan
| |
Collapse
|
3
|
Tarasova E, Bogacheva P, Chernyshev K, Balezina O. Quantal size increase induced by the endocannabinoid 2-arachidonoylglycerol requires activation of CGRP receptors in mouse motor synapses. Synapse 2024; 78:e22281. [PMID: 37694983 DOI: 10.1002/syn.22281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
In mouse motor synapses, the exogenous application of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG) increases acetylcholine (ACh) quantal size due to the activation of CB1 receptors and the stimulation of ACh vesicular uptake. In the present study, microelectrode recordings of miniature endplate potentials (MEPP) revealed that this effect of 2-AG is independent of brain-derived neurotrophic factor (BDNF) signaling but involves the activation of calcitonin gene-related peptide (CGRP) receptors along with CB1 receptors. Potentiation of MEPP amplitude in the presence of 2-AG was prevented by blockers of CGRP receptors and ryanodine receptors (RyR) and by inhibitors of phospholipase C (PLC) and Ca2+ /calmodulin-dependent protein kinase II (CaMKII). Therefore, we suggest a hypothetical chain of events, which starts from the activation of presynaptic CB1 receptors, involves PLC, RyR, and CaMKII, and results in CGRP release with the subsequent activation of presynaptic CGRP receptors. Activation of CGRP receptors is probably a part of a complex molecular cascade leading to the 2-AG-induced increase in ACh quantal size and MEPP amplitude. We propose that the same chain of events may also take place if 2-AG is endogenously produced in mouse motor synapses, because the increase in MEPP amplitude that follows after prolonged tetanic muscle contractions (30 Hz, 2 min) was prevented by the blocking of CB1 receptors. This work may help to unveil the previously unknown aspects of the functional interaction between ECs and peptide modulators aimed at the regulation of quantal size and synaptic transmission.
Collapse
Affiliation(s)
- Ekaterina Tarasova
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Polina Bogacheva
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kirill Chernyshev
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
4
|
Schoenen J, Van Dycke A, Versijpt J, Paemeleire K. Ten open questions in migraine prophylaxis with monoclonal antibodies blocking the calcitonin-gene related peptide pathway: a narrative review. J Headache Pain 2023; 24:99. [PMID: 37528353 PMCID: PMC10391994 DOI: 10.1186/s10194-023-01637-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
The monoclonal antibodies (mAbs) blocking the calcitonin-gene related peptide (CGRP) pathway, collectively called here "anti-CGRP/rec mAbs", have dramatically improved preventive migraine treatment. Although their efficacy and tolerability were proven in a number of randomized controlled trials (RCTs) and, maybe even more convincingly, in real world settings, a number of open questions remain. In this narrative review, we will analyze published data allowing insight in some of the uncertainties related to the use of anti-CGRP/rec mAbs in clinical practice: their differential efficacy in migraine subtypes, outcome predictors, switching between molecules, use in children and adolescents, long-term treatment adherence and persistence, effect persistence after discontinuation, combined treatment with botulinum toxin or gepants, added-value and cost effectiveness, effectiveness in other headache types, and potential contraindications based on known physiological effects of CGRP. While recent studies have already provided hints for some of these questions, many of them will not find reliable and definitive answers before larger studies, registries or dedicated RCTs are available.
Collapse
Affiliation(s)
- Jean Schoenen
- Headache Research Unit, Department of Neurology‑Citadelle Hospital, University of Liège, Boulevard du 12 ème de Ligne 1, Liège, 4000, Belgium.
| | - Annelies Van Dycke
- Department of Neurology, General Hospital Sint-Jan Bruges, Ruddershove 10, Bruges, 8000, Belgium
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Koen Paemeleire
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| |
Collapse
|
5
|
The Role of the Acetylcholine System in Common Respiratory Diseases and COVID-19. Molecules 2023; 28:molecules28031139. [PMID: 36770805 PMCID: PMC9920988 DOI: 10.3390/molecules28031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
As an indispensable component in human beings, the acetylcholine system regulates multiple physiological processes not only in neuronal tissues but also in nonneuronal tissues. However, since the concept of the "Nonneuronal cholinergic system (NNCS)" has been proposed, the role of the acetylcholine system in nonneuronal tissues has received increasing attention. A growing body of research shows that the acetylcholine system also participates in modulating inflammatory responses, regulating contraction and mucus secretion of respiratory tracts, and influencing the metastasis and invasion of lung cancer. In addition, the susceptibility and severity of respiratory tract infections caused by pathogens such as Mycobacterium Tuberculosis and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can also correlate with the regulation of the acetylcholine system. In this review, we summarized the major roles of the acetylcholine system in respiratory diseases. Despite existing achievements in the field of the acetylcholine system, we hope that more in-depth investigations on this topic will be conducted to unearth more possible pharmaceutical applications for the treatment of diverse respiratory diseases.
Collapse
|
6
|
Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE. ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses. Front Cell Neurosci 2022; 16:866802. [PMID: 35591942 PMCID: PMC9110780 DOI: 10.3389/fncel.2022.866802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
The effects of brain-derived neurotrophic factor (BDNF) processing by-products (proBDNF and BDNF prodomain) on the activity of mouse neuromuscular junctions (NMJs) were studied in synapses formed during the reinnervation of extensor digitorum longus muscle (m. EDL) and mature synapses of the diaphragm. The parameters of spontaneous miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were analyzed in presence of each of the BDNF maturation products (both – 1 nM). In newly formed NMJs, proBDNF caused an increase in the resting membrane potential of muscle fibers and a decrease in the frequency of MEPPs, which was prevented by tertiapin-Q, a G-protein-coupled inwardly rectifying potassium channels (GIRK) blocker but not by p75 receptor signaling inhibitor TAT-Pep5. proBDNF had no effect on the parameters of EPPs. BDNF prodomain in newly formed synapses had effects different from those of proBDNF: it increased the amplitude of MEPPs, which was prevented by vesamicol, an inhibitor of vesicular acetylcholine (ACh) transporter; and reduced the quantal content of EPPs. In mature NMJs, proBDNF did not influence MEPPs parameters, but BDNF prodomain suppressed both spontaneous and evoked ACh release: decreased the frequency and amplitude of MEPPs, and the amplitude and quantal content of EPPs. This effect of the BDNF prodomain was prevented by blocking GIRK channels, by TAT-Pep5 or by Rho-associated protein kinase (ROCK) inhibitor Y-27632. At the same time, the BDNF prodomain did not show any inhibitory effects in diaphragm motor synapses of pannexin 1 knockout mice, which have impaired purinergic regulation of neuromuscular transmission. The data obtained suggest that there is a previously unknown mechanism for the acute suppression of spontaneous and evoked ACh release in mature motor synapses, which involves the activation of p75 receptors, ROCK and GIRK channels by BDNF prodomain and requires interaction with metabotropic purinoreceptors. In general, our results show that both the precursor of BDNF and the product of its maturation have predominantly inhibitory effects on spontaneous and evoked ACh release in newly formed or functionally mature neuromuscular junctions, which are mainly opposite to the effects of BDNF. The inhibitory influences of both proteins related to brain neurotrophin are mediated via GIRK channels of mouse NMJs.
Collapse
|
7
|
Li H, Su YS, He W, Zhang JB, Zhang Q, Jing XH, Zhan LB. The nonneuronal cholinergic system in the colon: A comprehensive review. FASEB J 2022; 36:e22165. [PMID: 35174565 DOI: 10.1096/fj.202101529r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
Acetylcholine (ACh) is found not only in cholinergic nerve termini but also in the nonneuronal cholinergic system (NNCS). ACh is released from cholinergic nerves by vesicular ACh transporter (VAChT), but ACh release from the NNCS is mediated by organic cation transporter (OCT). Recent studies have suggested that components of the NNCS are located in intestinal epithelial cells (IECs), crypt-villus organoids, immune cells, intestinal stem cells (ISCs), and vascular endothelial cells (VECs). When ACh enters the interstitial space, its self-modulation or effects on adjacent tissues are part of the range of its biological functions. This review focuses on the current understanding of the mechanisms of ACh synthesis and release in the NNCS. Furthermore, studies on ACh functions in colonic disorders suggest that ACh from the NNCS contributes to immune regulation, IEC and VEC repair, ISC differentiation, colonic movement, and colonic tumor development. As indicated by the features of some colonic disorders, ACh and the NNCS have positive and negative effects on these disorders. Furthermore, the NNCS is located in multiple colonic organs, and the specific effects and cross-talk involving ACh from the NNCS in different colonic tissues are explored.
Collapse
Affiliation(s)
- Han Li
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Bin Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhang
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
8
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Arkhipov AY, Samigullin DV, Semina II, Malomouzh AI. Functional Assessment of Peripheral
Cholinergic Neurotransmission in Rats with Fetal Valproate Syndrome. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bogacheva P, Balezina O. Delayed increase of acetylcholine quantal size induced by the activity-dependent release of endogenous CGRP but not ATP in neuromuscular junctions. Synapse 2020; 74:e22175. [PMID: 32478912 DOI: 10.1002/syn.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 11/09/2022]
Abstract
In mouse motor synapses tetanic neuromuscular activity (30 Hz, 2 min) led to a delayed posttetanic potentiation of amplitude and duration of spontaneous miniature endplate potentials (MEPPs). Microelectrode recordings of MEPPs before and after nerve stimulation showed an increase in MEPP amplitude and time course by 30% and 15%, respectively, without changes in their frequency. Peak effect was detected 20 min after tetanic activity and progressively faded throughout the next 40 min of recording. The revealed potentiation of MEPPs was fully preserved in preparations from pannexin 1 knockout mice. It means, that myogenic ATP released via pannexin 1 channels from contracting muscle fibers is not likely to participate in the described phenomenon. But posttetanic potentiation of MEPPs was fully prevented by competitive antagonist of calcitonin gene-related peptide (CGRP) receptors CGRP8-37 , ryanodine receptors inhibitor ryanodine and by vesicular acetylcholine transporter inhibitor vesamicol. It is suggested that the combination of intensive synaptic and contractile activity in neuromuscular junctions is required to induce Ca2+ -dependent exocytosis of endogenous CGRP. The accumulation of CGRP in the synaptic cleft and its presynaptic activity may induce posttetanic potentiation of MEPP amplitude due to CGRP-stimulated acetylcholine loading into vesicles and subsequent increase of quantal size.
Collapse
Affiliation(s)
- Polina Bogacheva
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Miteva A, Gaydukov A, Balezina O. Interaction between Calcium Chelators and the Activity of P2X7 Receptors in Mouse Motor Synapses. Int J Mol Sci 2020; 21:ijms21062034. [PMID: 32188153 PMCID: PMC7139400 DOI: 10.3390/ijms21062034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 11/19/2022] Open
Abstract
The ability of P2X7 receptors to potentiate rhythmically evoked acetylcholine (ACh) release through Ca2+ entry via P2X7 receptors and via L-type voltage-dependent Ca2+ channels (VDCCs) was compared by loading Ca2+ chelators into motor nerve terminals. Neuromuscular preparations of the diaphragms of wild-type (WT) mice and pannexin-1 knockout (Panx1−/−) mice, in which ACh release is potentiated by the disinhibition of the L-type VDCCs upon the activation of P2X7 receptors, were used. Miniature end-plate potentials (MEPPs) and evoked end-plate potentials (EPPs) were recorded when the motor terminals were loaded with slow or fast Ca2+ chelators (EGTA-AM or BAPTA-AM, respectively, 50 μM). In WT and Panx1−/− mice, EGTA-AM did not change either spontaneous or evoked ACh release, while BAPTA-AM inhibited synaptic transmission by suppressing the quantal content of EPPs throughout the course of the short rhythmic train (50 Hz, 1 s). In the motor synapses of either WT or Panx1−/− mice in the presence of BAPTA-AM, the activation of P2X7 receptors by BzATP (30 μM) returned the EPP quantal content to the control level. In the neuromuscular junctions (NMJs) of Panx1−/− mice, EGTA-AM completely prevented the BzATP-induced increase in EPP quantal content. After Panx1−/− NMJs were treated with BAPTA-AM, BzATP lost its ability to enhance the EPP quantal content to above the control level. Nitrendipine (1 μM), an inhibitor of L-type VDCCs, was unable to prevent this BzATP-induced enhancement of EPP quantal content to the control level. We propose that the activation of P2X7 receptors may provide additional Ca2+ entry into motor nerve terminals, which, independent of the modulation of L-type VDCC activity, can partially reduce the buffering capacity of Ca2+ chelators, thereby providing sufficient Ca2+ signals for ACh secretion at the control level. However, the activity of both Ca2+ chelators was sufficient to eliminate Ca2+ entry via L-type VDCCs activated by P2X7 receptors and increase the EPP quantal content in the NMJs of Panx1−/− mice to above the control level.
Collapse
|
12
|
Gaydukov AE, Dzhalagoniya IZ, Tarasova EO, Balezina OP. The Participation of Endocannabinoid Receptors in the Regulation of Spontaneous Synaptic Activity at Neuromuscular Junctions of Mice. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819060059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Regulation of Acetylcholine Quantal Release by Coupled Thrombin/BDNF Signaling in Mouse Motor Synapses. Cells 2019; 8:cells8070762. [PMID: 31336670 PMCID: PMC6678150 DOI: 10.3390/cells8070762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to compare the acute effects of thrombin and brain-derived neurotrophic factor (BDNF) on spontaneous miniature endplate potentials (MEPPs) and multiquantal evoked endplate potentials (EPPs) in mouse neuromuscular junctions (NMJs) of m. diaphragma and m. EDL. Intracellular microelectrode recordings of MEPPs and EPPs were used to evaluate the changes in acetylcholine (ACh) release in mature and newly-formed mouse NMJs. Thrombin (1 nM) increased the amplitude of MEPPs and EPPs by 25–30% in mature and newly-formed NMJs. This effect was due to an enhanced loading of synaptic vesicles with ACh and increase of ACh quantal size, since it was fully prevented by blocking of vesicular ACh transporter. It was also prevented by tropomyosin-related kinase B (TrkB) receptors inhibitor ANA12. Exogenous BDNF (1 nM) mimicked thrombin effect and increased the amplitude of MEPPs and EPPs by 25–30%. It required involvement of protein kinase A (PKA) and mitogen-activated protein kinase (MEK1/2)-mediated pathway, but not phospholipase C (PLC). Blocking A2A adenosine receptors by ZM241385 abolished the effect of BDNF, whereas additional stimulation of A2A receptors by CGS21680 increased MEPP amplitudes, which was prevented by MEK1/2 inhibitor U0126. At mature NMJs, BDNF enhanced MEPPs frequency by 30–40%. This effect was selectively prevented by inhibition of PLC, but not PKA or MEK1/2. It is suggested that interrelated effects of thrombin/BDNF in mature and newly-formed NMJs are realized via enhancement of vesicular ACh transport and quantal size increase. BDNF-induced potentiation of synaptic transmission involves the functional coupling between A2A receptor-dependent active PKA and neurotrophin-triggered MAPK pathway, as well as PLC-dependent increase in frequency of MEPPs.
Collapse
|
14
|
Gaydukov AE, Balezina OP. Ryanodine- and CaMKII-dependent release of endogenous CGRP induces an increase in acetylcholine quantal size in neuromuscular junctions of mice. Brain Behav 2018; 8:e01058. [PMID: 29978952 PMCID: PMC6085904 DOI: 10.1002/brb3.1058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to identify the mechanism responsible for an increase in miniature endplate potentials (MEPPs) amplitude, induced by ryanodine as an agonist of ryanodine receptors in mouse motor nerve terminals. METHODS Using intracellular microelectrode recordings of MEPPs and evoked endplate potentials (EPPs), the changes in spontaneous and evoked acetylcholine release in motor synapses of mouse diaphragm neuromuscular preparations were studied. RESULTS Ryanodine (0.1 μM) increased both the amplitudes of MEPPs and EPPs to a similar extent (up to 130% compared to control). The ryanodine effect was prevented by blockage of receptors of calcitonin gene-related peptide (CGRP) by a truncated peptide CGRP8-37 . Endogenous CGRP is stored in large dense-core vesicles in motor nerve terminals and may be released as a co-transmitter. The ryanodine-induced increase in MEPPs amplitude may be fully prevented by inhibition of vesicular acetylcholine transporter by vesamicol or by blocking the activity of protein kinase A with H-89, suggesting that endogenous CGRP is released in response to the activation of ryanodine receptors. Activation of CGRP receptors can, in turn, upregulate the loading of acetylcholine into synaptic vesicles, which will increase the quantal size. This new feature of endogenous CGRP activity looks similar to recently described action of exogenous CGRP in motor synapses of mice. The ryanodine effect was prevented by inhibitors of Ca/Calmodulin-dependent kinase II (CaMKII) KN-62 or KN-93. Inhibition of CaMKII did not prevent the increase in MEPPs amplitude, which was caused by exogenous CGRP. CONCLUSIONS We propose that the activity of presynaptic CaMKII is necessary for the ryanodine-stimulated release of endogenous CGRP from motor nerve terminals, but CaMKII does not participate in signaling downstream the activation of CGRP-receptors followed by quantal size increase.
Collapse
Affiliation(s)
- Alexander E Gaydukov
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | - Olga P Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Popova LB, Nosikova ES, Kotova EA, Tarasova EO, Nazarov PA, Khailova LS, Balezina OP, Antonenko YN. Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1000-1007. [DOI: 10.1016/j.bbamem.2018.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
|
16
|
Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó-Ollé A, Cilleros-Mañé V, Just-Borràs L. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Front Pharmacol 2018; 9:397. [PMID: 29740322 PMCID: PMC5928480 DOI: 10.3389/fphar.2018.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.
Collapse
Affiliation(s)
- Josep Tomàs
- *Correspondence: Josep Tomàs, Neus Garcia, Maria A. Lanuza,
| | - Neus Garcia
- *Correspondence: Josep Tomàs, Neus Garcia, Maria A. Lanuza,
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Morsch M, Protti DA, Cheng D, Braet F, Chung RS, Reddel SW, Phillips WD. Cannabinoid-induced increase of quantal size and enhanced neuromuscular transmission. Sci Rep 2018; 8:4685. [PMID: 29549349 PMCID: PMC5856814 DOI: 10.1038/s41598-018-22888-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
Cannabinoids exert dynamic control over many physiological processes including memory formation, cognition and pain perception. In the central nervous system endocannabinoids mediate negative feedback of quantal transmitter release following postsynaptic depolarization. The influence of cannabinoids in the peripheral nervous system is less clear and might have broad implications for the therapeutic application of cannabinoids. We report a novel cannabinoid effect upon the mouse neuromuscular synapse: acutely increasing synaptic vesicle volume and raising the quantal amplitudes. In a mouse model of myasthenia gravis the cannabinoid receptor agonist WIN 55,212 reversed fatiguing failure of neuromuscular transmission, suggesting future therapeutic potential. Our data suggest an endogenous pathway by which cannabinoids might help to regulate transmitter release at the neuromuscular junction.
Collapse
Affiliation(s)
- Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Discipline of Physiology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Dario A Protti
- Discipline of Physiology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology), The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology), The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Centre for Microscopy & Microanalysis (ACMM), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Stephen W Reddel
- Departments of Molecular Medicine & Neurology, Concord Clinical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - William D Phillips
- Discipline of Physiology and Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
18
|
Gaydukov AE, Akutin IA, Bogacheva PO, Balezina OP. Changes in the Parameters of Quantal Acetylcholine Release after Activation of PAR1-Type Thrombin Receptors at the Mouse Neuromuscular Junctions. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|