1
|
Habotta O, Ateya A, Saleh RM, El-Ashry ES. Thiamethoxam Evoked Neural Oxido-inflammatory Stress in Male Rats Through Modulation of Nrf2/NF-kB/iNOS Signaling and Inflammatory Cytokines: Neuroprotective Effect of Silymarin. Neurotoxicology 2023; 96:28-36. [PMID: 36958429 DOI: 10.1016/j.neuro.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Thiamethoxam (TMX), a neonicotinoid insecticide, is a widely used insecticide with neurotoxic potential. Silymarin (SM), a milk thistle-derived flavonoid, is known with its promising biological activities. This study explored the neuroprotective effects of SM against TMX-triggered cortical injury in male rats. Animals were divided into four groups and treated daily either with SM (150mg/kg), TMX (78.15mg/kg), or both at the aforementioned doses for 28 days. Our results revealed marked declines in cortical SOD and CAT activities with elevations in MDA, IL-1b and TNF-α levels in TMX-treated rats. Further, TMX induced down-regulation in the gene expressions of Sod, Cat, Gpx, and Nrf-2, with up-regulation in the gene expressions of IL-1b, IL-6, iNOS, TNF-α and NF-kB. Interestingly, pre-treatment with SM provided a notable neuroprotective action against TMX-mediated cortical damage that indicates its promising antioxidant and anti-inflammatory activities. This effect may be mediated by Nrf2/NF-kB/iNOS signalling and suppression of excess free radicals and production of inflammatory cytokines. In brief, SM could be a promising therapeutic agent against TMX-mediated neural complication via its antioxidant and anti-inflammatory properties. PRACTICAL APPLICATIONS: The using of neonicotinoids as thiamethoxam is recently increased and is associated with brain damage. TMX induced excessive oxidative and inflammatory damage. Therefore, new therapeutic approaches are needed to counteract its adverse effects on the nervous system. SM, a flavonoid, is extracted from the seeds and fruits of milk thistle. Due to its potent antioxidative activity, SM have been applied to mitigate the oxidative stress as well as inflammatory disorders. Herein, we examined the potential therapeutic role of SM against TMX-induced brain oxidative stress and inflammation in rats through evaluating oxidative markers, inflammatory response, and histopathological changes in the brain cortical tissue.
Collapse
Affiliation(s)
- Ola Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
4
|
Nguyen CD, Lee G. Neuroprotective Activity of Melittin-The Main Component of Bee Venom-Against Oxidative Stress Induced by Aβ 25-35 in In Vitro and In Vivo Models. Antioxidants (Basel) 2021; 10:antiox10111654. [PMID: 34829525 PMCID: PMC8614890 DOI: 10.3390/antiox10111654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Melittin, a 26-amino acid peptide, is the main component of the venom of four honeybee species and exhibits neuroprotective actions. However, it is unclear how melittin ameliorates neuronal cells in oxidative stress and how it affects memory impairment in an in vivo model. We evaluated the neuroprotective effect of melittin on Aβ25–35-induced neuro-oxidative stress in both in vitro HT22 cells and in vivo animal model. Melittin effectively protected against HT22 cell viability and significantly deregulated the Aβ25–35-induced overproduction of intracellular reactive oxygen species. Western blot analysis showed that melittin suppressed cell apoptosis and regulated Bax/Bcl-2 ratio, as well as the expression of proapoptotic related factors: Apoptosis-inducing factor (AIF), Calpain, Cytochrome c (CytoC), Cleaved caspase-3 (Cleacas3). Additionally, melittin enhanced the antioxidant defense pathway by regulating the nuclear translocation of nuclear factor erythroid 2-like 2 (Nrf2) thus upregulated the production of the heme oxygenase-1 (HO-1), a major cellular antioxidant enzyme combating neuronal oxidative stress. Furthermore, melittin treatment activated the Tropomyosin-related kinase receptor B (TrkB)/cAMP Response Element-Binding (CREB)/Brain-derived neurotrophic factor (BDNF), contributing to neuronal neurogenesis, and regulating the normal function of synapses in the brain. In our in vivo experiment, melittin was shown to enhance the depleted learning and memory ability, a novel finding. A mouse model with cognitive deficits induced by Aβ25–35 intracerebroventricular injection was used. Melittin had dose-dependently enhanced neural-disrupted animal behavior and enhanced neurogenesis in the dentate gyrus hippocampal region. Further analysis of mouse brain tissue and serum confirmed that melittin enhanced oxidant–antioxidant balance, cholinergic system activity, and intercellular neurotrophic factors regulation, which were all negatively altered by Aβ25–35. Our study shows that melittin exerts antioxidant and neuroprotective actions against neural oxidative stress. Melittin can be a potential therapeutic agent for neurodegenerative disorders.
Collapse
|
5
|
Vargas-Mendoza N, García-Machorro J, Angeles-Valencia M, Martínez-Archundia M, Madrigal-Santillán EO, Morales-González Á, Anguiano-Robledo L, Morales-González JA. Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals. World J Gastroenterol 2021; 27:5630-5665. [PMID: 34629792 PMCID: PMC8473593 DOI: 10.3748/wjg.v27.i34.5630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has affected millions of people globally. It was declared a pandemic by the World Health Organization in March 2020. The hyperinflammatory response to the entry of SARS-CoV-2 into the host through angiotensin-converting enzyme 2 is the result of a "cytokine storm" and the high oxidative stress responsible for the associated symptomatology. Not only respiratory symptoms are reported, but gastrointestinal symptoms (diarrhea, vomiting, and nausea) and liver abnormalities (high levels of aspartate aminotransferase, alanine aminotransferase transaminases, and bilirubin) are observed in at least 30% of patients. Reduced food intake and a delay in medical services may lead to malnutrition, which increases mortality and poor outcomes. This review provides some strategies to identify malnutrition and establishes nutritional approaches for the management of COVID-19 and liver injury, taking energy and nutrient requirements and their impact on the immune response into account. The roles of certain phytochemicals in the prevention of the disease or as promising target drugs in the treatment of this disease are also considered.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | | | - Marlet Martínez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Instituto Politécnico Nacional, México 11340, Mexico
| | | | | | | | - José A Morales-González
- Laboratorio Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México 11340, Mexico
| |
Collapse
|
6
|
Wu S, Yu W, Jiang X, Huang R, Zhang X, Lan J, Zhong G, Wan F, Tang Z, Hu L. Protective effects of curcumin on ATO-induced nephrotoxicity in ducks in relation to suppressed autophagy, apoptosis and dyslipidemia by regulating oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112350. [PMID: 34022626 DOI: 10.1016/j.ecoenv.2021.112350] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Arsenic trioxide (ATO) has been known as common environmental pollution, and is deemed to a threat to global public health. Curcumin (Cur) is a phytoconstituent, which has been demonstrated to have antioxidant effects. In the current experiment, we investigated the efficacy of Cur against ATO-induced kidney injury and explored the potential molecular mechanisms that have not yet been fully elucidated in ducks. The results showed that treatment with Cur attenuated ATO-induced body weight loss, reduced the content of ATO in the kidney, and improved ATO-induced kidney pathological damage. Cur also remarkably alleviated the ascent of ATO-induced MDA level and activated the Nrf2 pathway. Using the TEM, we found Cur relieved mitochondrial swelling, autolysosomes generating and nuclear damage. Simultaneously, Cur was found that it not only significantly reduced autophagy-related mRNA and protein levels (mTOR, LC3-Ⅰ, LC3-Ⅱ, Atg-5, Beclin1, Pink1 and Parkin) and but also decreased apoptosis-related mRNA and protein expression levels (cleaved caspase-3, Cytc, p53 and Bax). Furthermore, through nontargeted metabolomics analysis, we observed that lipid metabolism balance was disordered by ATO exposure, while Cur administration alleviated the disturbance of lipid metabolism. These results showed ATO could induce autophagy and apoptosis by overproducing ROS in the kidney of ducks, and Cur might relieve excessive autophagy, apoptosis and disturbance of lipid metabolism by regulating oxidative stress. Collectively, our findings explicate the potential therapeutic value of Cur as a new strategy to a variety of disorders caused by ATO exposure.
Collapse
Affiliation(s)
- Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11644-11664. [PMID: 33045827 DOI: 10.1021/acs.jafc.0c04791] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silybum marianum (SM), a well-known plant used as both a medicine and a food, has been widely used to treat various diseases, especially hepatic diseases. The seeds and fruits of SM contain a flavonolignan complex called silymarin, the active compounds of which include silybin, isosilybin, silychristin, dihydrosilybin, silydianin, and so on. In this review, we thoroughly summarize high-quality publications related to the pharmacological effects and underlying mechanisms of SM. SM has antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, neuroprotective, skin-protective, antidiabetic, and other effects. Importantly, SM also counteracts the toxicities of antibiotics, metals, and pesticides. The diverse pharmacological activities of SM provide scientific evidence supporting its use in both humans and animals. Multiple signaling pathways associated with oxidative stress and inflammation are the common molecular targets of SM. Moreover, the flavonolignans of SM are potential agonists of PPARγ and ABCA1, PTP1B inhibitors, and metal chelators. At the end of the review, the potential and perspectives of SM are discussed, and these insights are expected to facilitate the application of SM and the discovery and development of new drugs. We conclude that SM is an interesting dietary medicine for health enhancement and drug discovery and warrants further investigation.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Chen N, Wang J, He Y, Xu Y, Zhang Y, Gong Q, Yu C, Gao J. Trilobatin Protects Against Aβ 25-35-Induced Hippocampal HT22 Cells Apoptosis Through Mediating ROS/p38/Caspase 3-Dependent Pathway. Front Pharmacol 2020; 11:584. [PMID: 32508629 PMCID: PMC7248209 DOI: 10.3389/fphar.2020.00584] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence reveals that an aberrant accumulation of β-amyloid (Aβ) is the main reason of Alzheimer’s disease (AD) pathogenesis. Thus, inhibition of Aβ-induced neurotoxicity may be promising therapeutic tactics to mitigate AD onset and advance. The development of agent candidates by cultured neurons against Aβ-induced cytotoxicity is widely accepted to be an efficient strategy to explore the drug for AD patients. Previously, we have revealed that trilobatin (TLB), a small molecule monomer, derives from Lithocarpus polystachyus Rehd, possessed antioxidative activities on hydrogen peroxide-induced oxidative injury in PC12 cells. The present study was designed to investigate the effects and the underlying mechanism of TLB on Aβ-induced injury in hippocampal HT22 cells. The results demonstrated that TLB attenuated Aβ25–35-induced HT22 cell death, as evidenced by MTT assay and LDH release. Furthermore, TLB dramatically mitigated cell death after Aβ25–35 insulted via decreasing the intracellular and mitochondrial ROS overproduction and restoring antioxidant enzyme activities, as well as suppressing apoptosis. Of note, Aβ25–35 triggered increase in ratio of Bax/Bcl-2, activation of caspase-3, phosphorylation of tau, JNK, p38 MAPK, and decrease in Sirt3 expression, whereas TLB reversed these changes. Intriguingly, TLB could directly bind to p38, as evidenced by molecular docking and p38 inhibitor. Taken together, the results reveal that TLB effectively protects against Aβ25–35-induced neuronal cell death via activating ROS/p38/caspase 3-dependent pathway. Our findings afford evidence for the potential development of TLB to hinder neuronal death during AD.
Collapse
Affiliation(s)
- Nana Chen
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jiao Wang
- Department of Neurology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuchuan Zhang
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Vargas-Mendoza N, Morales-González Á, Morales-Martínez M, Soriano-Ursúa MA, Delgado-Olivares L, Sandoval-Gallegos EM, Madrigal-Bujaidar E, Álvarez-González I, Madrigal-Santillán E, Morales-Gonzalez JA. Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications. Biomedicines 2020; 8:biomedicines8050122. [PMID: 32423098 PMCID: PMC7277158 DOI: 10.3390/biomedicines8050122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from Silybum marianum, commonly known as milk thistle or St. Mary'sthistle. These species have been widely used in the treatment of liver disorders in traditional medicine since ancient times. Several properties had been attributed to the major SM flavolignans components, identified as silybin, isosilybin, silychristin, isosilychristin, and silydianin. Previous research reported antioxidant and protective activities, which are probably related to the activation of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response. Nrf2 is a redox-sensitive nuclear transcription factor able to induce the downstream-associated genes. The disruption of Nrf2 signaling has been associated with different pathological conditions. Some identified phytochemicals from SM had shown to participate in the Nrf2 signaling pathway; in particular, they have been suggested as activators that disrupt interactions in the Keap1-Nrf2 system, but also as antioxidants or with additional actions regarding Nrf2 regulation. Thus, the study of these molecules makes them appear attractive as novel targets for the treatment or prevention of several diseases.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico;
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Mexico City CP 14420, Mexico;
| | - Marvin A. Soriano-Ursúa
- Academia de Fisiología Humana, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Luis Delgado-Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Circuito Actopan-Tilcuauttla, s/n, Ex hacienda La Concepción, San Agustín Tlaxiaca, Hidalgo CP 42160, Mexico; (L.D.-O.); (E.M.S.-G.)
| | - Eli Mireya Sandoval-Gallegos
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Circuito Actopan-Tilcuauttla, s/n, Ex hacienda La Concepción, San Agustín Tlaxiaca, Hidalgo CP 42160, Mexico; (L.D.-O.); (E.M.S.-G.)
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (E.M.-S. & J.A.M.-G.)
| | - José A. Morales-Gonzalez
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (E.M.-S. & J.A.M.-G.)
| |
Collapse
|
10
|
Pleiotropic Biological Effects of Dietary Phenolic Compounds and their Metabolites on Energy Metabolism, Inflammation and Aging. Molecules 2020; 25:molecules25030596. [PMID: 32013273 PMCID: PMC7037231 DOI: 10.3390/molecules25030596] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.
Collapse
|
11
|
Xu F, Han C, Li Y, Zheng M, Xi X, Hu C, Cui X, Cao H. The Chemical Constituents and Pharmacological Actions of Silybum Marianum. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180327155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents the chemical constituents and pharmacological actions of Silybum marianum. These chemical constituents include flavonolignans, fatty acids, phenolics and other chemical constituents. Furthermore, flavonolignans constituents include silymarin isosilychristin, silychristin, silydianin, silybin A, silybin B, isosilybin A, isosilybin B, etc. Pharmacological actions include a well curative effect on non-alcoholic steatohepatitis, UV damage, varieties of cancers, diabetes. In addition, its pharmacological actions include anti-inflammatory, anti-depression and more pharmacological actions. This paper will enable Silybum marianum lay the foundation for producing high and sustainable productions in the future.
Collapse
Affiliation(s)
- Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chaoqun Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
12
|
Dong P, Ji X, Han W, Han H. Oxymatrine attenuates amyloid beta 42 (Aβ1–42)-induced neurotoxicity in primary neuronal cells and memory impairment in rats. Can J Physiol Pharmacol 2019; 97:99-106. [DOI: 10.1139/cjpp-2018-0299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid beta 42 (Aβ1–42)-induced oxidative stress causes the death of neuronal cells and is involved in the development of Alzheimer’s disease. Oxymatrine (OMT) inhibits oxidative stress. In this study, we investigated the effect of OMT on Aβ1–42-induced neurotoxicity in vivo and in vitro. In the Morris water maze test, OMT significantly decreased escape latency and increased the number of platform crossings. In vitro, OMT markedly increased cell viability and superoxide dismutase activity. Moreover, OMT decreased lactate dehydrogenase leakage, malondialdehyde content, and reactive oxygen species in a dose-dependent manner. OMT upregulated the ratio of Bcl-2/Bax and downregulated the level of caspase-3. Furthermore, OMT inhibited the activation of MAP kinase (ERK 1/2, JNK) and nuclear factor κB. In summary, OMT may potentially be used in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaomeng Ji
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Han
- Key Laboratory of Chinese Materia, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hua Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
13
|
Antidepressant effects of creatine on amyloid β 1-40-treated mice: The role of GSK-3β/Nrf 2 pathway. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:270-278. [PMID: 29753049 DOI: 10.1016/j.pnpbp.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction and neuronal lost in specific brain areas including hippocampus, resulting in memory/learning deficits and cognitive impairments. In addition, non-cognitive symptoms are reported in AD patients, such as anxiety, apathy and depressed mood. The current antidepressant drugs present reduced efficacy to improve depressive symptoms in AD patients. Here, we investigated the ability of creatine, a compound with neuroprotective and antidepressant properties, to counteract amyloid β1-40 peptide-induced depressive-like behavior in mice. Moreover, we addressed the participation of the intracellular signaling pathway mediated by glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid-2-related factor 2 (Nrf2) in the creatine effects. Aß1-40 administration (400 pmol/mouse, i.c.v.) increased the immobility time in the tail suspension test and decreased the grooming time and increased latency to grooming in the splash test, indicative of depressive-like behavior. These impairments were attenuated by creatine (0.01 and 10 mg/kg, p.o.) and fluoxetine (10 mg/kg, p.o., positive control). No significant alterations on locomotor performance were observed in the open field. Aß1-40 administration did not alter hippocampal phospho-GSK-3β (Ser9)/total GSK-3β, total GSK-3β and heme oxygenase-1 (HO-1) immunocontents. However, Aß1-40-infused mice treated with creatine (0.01 mg/kg) presented increased phosphorylation of GSK-3β(Ser9) and HO-1 immunocontent in the hippocampus. Fluoxetine per se increased GSK-3β(Ser9) phosphorylation, but did not alter HO-1 levels. In addition, Aß1-40 administration increased hippocampal glutathione (GSH) levels as well as glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, and these effects were abolished by creatine and fluoxetine. This study provides the first evidence of the antidepressive-like effects of creatine in Aß1-40-treated mice, which were accompanied by hippocampal inhibition of GSK-3β and modulation of antioxidant defenses. These findings indicate the potential of creatine for the treatment of depression associated with AD.
Collapse
|
14
|
Chen C, Li B, Cheng G, Yang X, Zhao N, Shi R. Amentoflavone Ameliorates Aβ 1-42-Induced Memory Deficits and Oxidative Stress in Cellular and Rat Model. Neurochem Res 2018; 43:857-868. [PMID: 29411261 DOI: 10.1007/s11064-018-2489-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease of the central nervous system, is the most common cause of senile dementia. This study aimed to investigate whether amentoflavone (AF), a biflavonoid compound, could exert neuroprotective activities against AD. The AD model was established by the intracranial injection of amyloid-beta (Aβ) in rat models. The effect of AF on cognitive function was examined using the Morris water maze test. Cell survival and apoptosis in the hippocampal region in an animal model were detected using Nissl staining and a terminal deoxynucleotidyl transferased UTP nick-end labeling assay, respectively. The levels of oxidant enzymes were determined by enzyme-linked immunosorbent assay. Signaling molecule expressions were examined by western blotting. Our results showed that AF significantly attenuated Aβ-induced deficits in neurological functions as well as neuronal cell death and apoptosis in the hippocampal region. Moreover, our findings revealed that AF increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression and translocation and activated AMP-activated protein kinase (AMPK) signaling. In a cellular model of AD established by exposing PC12 cells to Aβ, our results provided further evidence that the neuroprotective activities of AF were mediated by modulating Nrf2 through AMPK/glycogen synthase kinase 3 beta signaling. AF exerts a protective effect against Aβ1-42-induced neurotoxcicity by inducing Nrf2 antioxidant pathways via AMPK signaling activation, which provided experimental evidence that AF might provide a clinical benefit to patients with AD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Bin Li
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
| | - Guangqing Cheng
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Xiaoni Yang
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Ningning Zhao
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Ran Shi
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
15
|
Jiao C, Gao F, Ou L, Yu J, Li M, Wei P, Miao F. Tetrahydroxy stilbene glycoside (TSG) antagonizes Aβ-induced hippocampal neuron injury by suppressing mitochondrial dysfunction via Nrf2-dependent HO-1 pathway. Biomed Pharmacother 2017; 96:222-228. [PMID: 28987946 DOI: 10.1016/j.biopha.2017.09.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022] Open
Abstract
Amyloid-beta peptide (Aβ) ranks as a pivotal cause of Alzheimer's disease (AD), a common devastating dementia form in elderly. Recent research corroborated the beneficial roles of tetrahydroxystilbene glucoside (TSG) in alleviating the learning and memory of AD model and aged mice. Unfortunately, the underlying mechanism remains poorly elucidated. Here, treatment with non-toxic TSG dose-dependently antagonized Aβ-induced cytotoxic death in hippocampal neuronal cells by increasing cell viability and decreasing cell apoptosis. Furthermore, TSG also alleviated cell oxidative stress injury in response to Aβ by attenuating lactate dehydrogenase (LDH) release, ROS levels and MDA leakage. Importantly, TSG administration abrogated Aβ-triggered loss of mitochondrial membrane potential (Δym), release of cytochrome c from mitochondrial to cytosol, increase in caspase-3 activity and pro-apoptotic protein Bax, and decrease in Bcl-2 protein, indicating that TSG could rescue mitochondrial dysfunctions of neuron cells under adverse Aβ condition. Subsequently, TSG induced the activation of Nrf2-HO-1 pathway. Importantly, blocking this pathway by si-Nrf2 transfection or HO-1 antagonist ZnPP notably muted the cytoprotective effects of TSG on neuronal cell cytotoxic injury upon Aβ stimulation. Together, this research substantiated a new mechanism that TSG protectively antagonized Aβ-induced hippocampal neuronal cell damage by restoring mitochondrial function via Nrf2-HO-1 pathway, implying a promising candidate against neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Chenli Jiao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Jinhua Yu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Feng Miao
- Department of Encephalopathy, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, PR China.
| |
Collapse
|
16
|
Martínez-Huélamo M, Rodríguez-Morató J, Boronat A, de la Torre R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants (Basel) 2017; 6:E73. [PMID: 28954417 PMCID: PMC5745483 DOI: 10.3390/antiox6040073] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
Strong adherence to a Mediterranean diet is associated with improved cognitive function and a lower prevalence of mild cognitive impairment. Olive oil and red wine are rich sources of polyphenols which are responsible in part for the beneficial effects on cognitive functioning. Polyphenols induce endogenous antioxidant defense mechanisms by modulating transcription factors such as the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This review discusses the scientific data supporting the modulating effect of olive oil and red wine polyphenols on Nrf2 expression, and the potential health benefits associated with cognitive functioning.
Collapse
Affiliation(s)
- Miriam Martínez-Huélamo
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Jose Rodríguez-Morató
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain.
| | - Anna Boronat
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
| | - Rafael de la Torre
- Integrated Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain.
| |
Collapse
|