1
|
Li J, Tan C, Zhang L, Cai S, Shen Q, Liu Q, Wang M, Song C, Zhou F, Yuan J, Liu Y, Lan B, Liao H. Neural functional network of early Parkinson's disease based on independent component analysis. Cereb Cortex 2023; 33:11025-11035. [PMID: 37746803 DOI: 10.1093/cercor/bhad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.
Collapse
Affiliation(s)
- Junli Li
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Lin Zhang
- Department of Radiology, Chengdu Fifth People's Hospital, Mashi Street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - ChenDie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Bowen Lan
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| |
Collapse
|
2
|
Coutinho AM, Ghilardi MG, Campos ACP, Etchebehere E, Fonoff FC, Cury RG, Pagano RL, Martinez RCR, Fonoff ET. Does TRODAT-1 SPECT Uptake Correlate with Cerebrospinal Fluid α-Synuclein Levels in Mid-Stage Parkinson's Disease? Biomedicines 2023; 11:biomedicines11020296. [PMID: 36830833 PMCID: PMC9952987 DOI: 10.3390/biomedicines11020296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons with impaired motor and non-motor symptoms. It has been suggested that motor asymmetry could be caused due to an imbalance in dopamine levels, as visualized by dopamine transporter single emission computed tomography test (DAT-SPECT), which might be related to indirect measures of neurodegeneration, evaluated by the Montreal Cognitive Assessment (MOCA) and α-synuclein levels in the cerebrospinal fluid (CSF). Therefore, this study aimed to understand the correlation between disease laterality, DAT-SPECT, cognition, and α-synuclein levels in PD. METHODS A total of 28 patients in the moderate-advanced stage of PD were subjected to neurological evaluation, TRODAT-1-SPECT/CT imaging, MOCA, and quantification of the levels of α-synuclein. RESULTS We found that α-synuclein in the CSF was correlated with global cognition (positive correlation, r2 = 0.3, p = 0.05) and DAT-SPECT concentration in the putamen (positive correlation, r2 = 0.4, p = 0.005), and striatum (positive correlation, r2 = 0.2, p = 0.03), thus working as a neurodegenerative biomarker. No other correlations were found between DAT-SPECT, CSF α-synuclein, and cognition, thus suggesting that they may be lost with disease progression. CONCLUSIONS Our data highlight the importance of understanding the dysfunction of the dopaminergic system in the basal ganglia and its complex interactions in modulating cognition.
Collapse
Affiliation(s)
- Artur M. Coutinho
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, SP, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 05403-010, SP, Brazil
- Division of Nuclear Medicine and PET/CT, Hospital Sírio-Libanês, Sao Paulo 01308-050, SP, Brazil
| | - Maria Gabriela Ghilardi
- Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 05403-010, SP, Brazil
| | | | - Elba Etchebehere
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Fernanda C. Fonoff
- Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 05403-010, SP, Brazil
| | - Rubens G. Cury
- Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 05403-010, SP, Brazil
| | - Rosana L. Pagano
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, SP, Brazil
| | - Raquel C. R. Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, SP, Brazil
- LIM/23—Institute of Psychiatry, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 05403-903, SP, Brazil
- Correspondence:
| | - Erich T. Fonoff
- Division of Neuroscience, Hospital Sírio-Libanês, Sao Paulo 01308-060, SP, Brazil
- Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo 05403-010, SP, Brazil
| |
Collapse
|
3
|
Wang X, Liu N, Wu L, Zhang Y, Zhang G. Abnormal functional connectivity in psoriasis patients with depression is associated with their clinical symptoms. Front Neurosci 2022; 16:1026610. [PMID: 36312016 PMCID: PMC9608187 DOI: 10.3389/fnins.2022.1026610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is a chronic, autoimmune disorder that is related to mental health disorders such as depression. However, few studies have focused on the features of brain activity in psoriasis patients with depression (PPD) and the association between brain activity and disease severity. A total of 29 PPD and 24 healthy controls were involved in this study, and all participants underwent resting-state functional magnetic resonance imaging (fMRI) scanning. The psoriasis area and severity index (PASI) and the self-rating depression scale (SDS) were used to measure clinical symptoms. Compared with HCs, PPD patients showed increased fractional amplitude of low-frequency fluctuation (fALFF) in the Frontal_Mid_L and increased functional connectivity (FC) between the hypothalamus-R and the Cingulum_Mid_R. Correlation analysis suggested a positive correlation between PASI and SDS scores in PPD, while the fALFF and FC values were negatively correlated with their SDS and PASI scores. These brain regions may be associated with the development of depressive symptoms and disease severity in psoriasis patients.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Capital Medical University, Beijing, China
- *Correspondence: Xiaoxu Wang,
| | - Ni Liu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lingjun Wu
- Department of Pediatric, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yanan Zhang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guangzhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Capital Medical University, Beijing, China
- Guangzhong Zhang,
| |
Collapse
|
4
|
Li J, Liao H, Wang T, Zi Y, Zhang L, Wang M, Mao Z, Song C, Zhou F, Shen Q, Cai S, Tan C. Alterations of Regional Homogeneity in the Mild and Moderate Stages of Parkinson's Disease. Front Aging Neurosci 2021; 13:676899. [PMID: 34366823 PMCID: PMC8336937 DOI: 10.3389/fnagi.2021.676899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo) in early Parkinson's disease (PD) at different Hoehn and Yahr (HY) stages and to demonstrate the relationships between altered brain regions and clinical scale scores. Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY stage: 1.0-1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0-2.5). We also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC). All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD) signals was used to characterize regional cerebral function. Correlative relationships between mean ReHo values and clinical data were then explored. Results: Compared to the HC group, the PD-mild group exhibited increased ReHo values in the right cerebellum, while the PD-moderate group exhibited increased ReHo values in the bilateral cerebellum, and decreased ReHo values in the right superior temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo values in the right superior orbital gyrus and the right rectus, in which the ReHo value was negatively correlated with cognition. Conclusion: The right superior orbital gyrus and right rectus may serve as a differential indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for ReHo alterations in the cortex and compensation in the cerebellum than those with mild PD. PD at HY stages of 2.0-2.5 may already be classified as Braak stages 5 and 6 in terms of pathology. Our study revealed the different patterns of brain function in a resting state in PD at different HY stages and may help to elucidate the neural function and early diagnosis of patients with PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Li X, Chen Q, Zheng W, Chen X, Wang L, Qin W, Li K, Lu J, Chen N. Inconsistency between cortical reorganization and functional connectivity alteration in the sensorimotor cortex following incomplete cervical spinal cord injury. Brain Imaging Behav 2021; 14:2367-2377. [PMID: 31444779 DOI: 10.1007/s11682-019-00190-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to explore whether there will be any alterations in sensorimotor-related cortex and the possible causes of sensorimotor dysfunction after incomplete cervical spinal cord injury (ICSCI). Structural and resting-state functional magnetic resonance imaging (rs-fMRI) of nineteen ICSCI patients and nineteen healthy controls (HCs) was acquired. Voxel based morphometry (VBM) and tract-based spatial statistics were performed to assess differences in gray matter volume (GMV) and white matter integrity between ICSCI patients and HCs. Whole brain functional connectivity (FC) was analyzed using the results of VBM as seeds. Associations between the clinical variables and the brain changes were studied. Compared with HCs, ICSCI patients demonstrated reduced GMV in the right fusiform gyrus (FG) and left orbitofrontal cortex (OFC) but no changes in areas directly related to sensorimotor function. There were no significant differences in brain white matter. Additionally, the FC in the left primary sensorimotor cortex and cerebellum decreased when the FG and OFC, respectively, were used as seeds. Subsequent relevance analysis suggests a weak positive correlation between the left OFC's GMV and visual analog scale (VAS) scores. In conclusion, brain structural changes following ICSCI occur mainly in certain higher cognitive regions, such as the FG and OFC, rather than in the brain areas directly related to sensation or motor control. The functional areas of the brain that are related to cognitive processing may play an important role in sensorimotor dysfunction through the decreased FC with sensorimotor areas after ICSCI. Therefore, cognition-related functional training may play an important role in rehabilitation of sensorimotor function after ICSCI.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Central Hospital, No. 15 Yuquan Road, Haidian District, Beijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Ling Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Xicheng District, Beijing, China.
| |
Collapse
|