1
|
Hu Y, Chen J, Li J, Xu Z. Models for depression recognition and efficacy assessment based on clinical and sequencing data. Heliyon 2024; 10:e33973. [PMID: 39130405 PMCID: PMC11315137 DOI: 10.1016/j.heliyon.2024.e33973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Major depression is a complex psychiatric disorder that includes genetic, neurological, and cognitive factors. Early detection and intervention can prevent progression, and help select the best treatment. Traditional clinical diagnosis tends to be subjective and misdiagnosed. Based on this, this study leverages clinical scale assessments and sequencing data to construct disease prediction models. Firstly, data undergoes preprocessing involving normalization and other requisite procedures. Feature engineering is then applied to curate subsets of features, culminating in the construction of a model through the implementation of machine learning and deep learning algorithms. In this study, 18 features with significant differences between patients and healthy controls were selected. The depression recognition model was constructed by deep learning with an accuracy of 87.26 % and an AUC of 91.56 %, which can effectively distinguish patients with depression from healthy controls. In addition, 33 features selected by recursive feature elimination method were used to construct a prognostic effect model of patients after 2 weeks of treatment, with an accuracy of 75.94 % and an AUC of 83.33 %. The results show that the deep learning algorithm based on clinical and sequencing data has good accuracy and provides an objective and accurate method for the diagnosis and pharmacodynamic prediction of depression. Furthermore, the selected differential features can serve as candidate biomarkers to provide valuable clues for diagnosis and efficacy prediction.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, 210096, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, 210096, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, 210096, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, 210009, China
- Research and Education Centre of General Practice, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
2
|
Jindal M, Chhetri A, Ludhiadch A, Singh P, Peer S, Singh J, Brar RS, Munshi A. Neuroimaging Genomics a Predictor of Major Depressive Disorder (MDD). Mol Neurobiol 2024; 61:3427-3440. [PMID: 37989980 DOI: 10.1007/s12035-023-03775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Depression is a complex psychiatric disorder influenced by various genetic and environmental factors. Strong evidence has established the contribution of genetic factors in depression through twin studies and the heritability rate for depression has been reported to be 37%. Genetic studies have identified genetic variations associated with an increased risk of developing depression. Imaging genetics is an integrated approach where imaging measures are combined with genetic information to explore how specific genetic variants contribute to brain abnormalities. Neuroimaging studies allow us to examine both structural and functional abnormalities in individuals with depression. This review has been designed to study the correlation of the significant genetic variants with different regions of neural activity, connectivity, and structural alteration in the brain as detected by imaging techniques to understand the scope of biomarkers in depression. This might help in developing novel therapeutic interventions targeting specific genetic pathways or brain circuits and the underlying pathophysiology of depression based on this integrated approach can be established at length.
Collapse
Affiliation(s)
- Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Aakash Chhetri
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Paramdeep Singh
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Sameer Peer
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences, Bathinda, India
| | - Rahatdeep Singh Brar
- Department of Diagnostic and Interventional Radiology, Homi Bhabha Cancer Hospital & Research Center, Mohali, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
3
|
Morozova A, Ushakova V, Pavlova O, Bairamova S, Andryshenko N, Ochneva A, Abramova O, Zorkina Y, Spektor VA, Gadisov T, Ukhov A, Zubkov E, Solovieva K, Alexeeva P, Khobta E, Nebogina K, Kozlov A, Klimenko T, Gurina O, Shport S, Kostuyk G, Chekhonin V, Pavlov K. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes (Basel) 2024; 15:240. [PMID: 38397229 PMCID: PMC10887670 DOI: 10.3390/genes15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.
Collapse
Affiliation(s)
- Anna Morozova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeriya Ushakova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Neurobiology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Pavlova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Sakeena Bairamova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Nika Andryshenko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
| | - Aleksandra Ochneva
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Abramova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valery A. Spektor
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Timur Gadisov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Andrey Ukhov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Eugene Zubkov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Kristina Solovieva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Polina Alexeeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Elena Khobta
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Kira Nebogina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Alexander Kozlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Tatyana Klimenko
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Olga Gurina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Svetlana Shport
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - George Kostuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Konstantin Pavlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| |
Collapse
|
4
|
O’Connell CJ, Brown RS, Peach TM, Traubert OD, Schwierling HC, Notorgiacomo GA, Robson MJ. Strain in the Midbrain: Impact of Traumatic Brain Injury on the Central Serotonin System. Brain Sci 2024; 14:51. [PMID: 38248266 PMCID: PMC10813794 DOI: 10.3390/brainsci14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.
Collapse
Affiliation(s)
- Christopher J. O’Connell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Ryan S. Brown
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Taylor M. Peach
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Owen D. Traubert
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA;
| | - Hana C. Schwierling
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | | | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Zeng Z, Peng L, Liu S, Yang Q, Wang H, He Z, Hu Y. Serotonergic multilocus genetic variation moderates the association between interpersonal relationship and adolescent depressive symptoms. J Affect Disord 2023; 340:616-625. [PMID: 37597782 DOI: 10.1016/j.jad.2023.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Research suggests that genetic variants linked to serotonin functioning moderate the association between environmental stressors and depressive symptoms, but examining gene-environment interactions with single polymorphisms limits power. METHODS A multilocus genetic profile score (MGPS) approach to measuring serotonergic multilocus genetic variation and examined interactions with interpersonal relationship, insomnia with depressive symptoms as outcomes in an adolescent sample (average age = 14.15 ± 0.63 years since first measurement; range: 13 to 15). RESULTS (1) interpersonal relationship predicted adolescent depressive symptoms; (2) insomnia mediated the effect of interpersonal relationships on adolescent depressive symptoms; (3) the THP2 gene rs4570625 polymorphism G allele was a key risk factor for depressive symptom, and the MGPS moderated the effects of teacher-student relationship and insomnia on adolescent depressive symptom. Specifically, as the MGPS increased, the effects of insomnia on adolescent depressive symptom were enhanced; further, when the MGPS score increased, the effect of teacher-student relationship on depression showed a similar phenomenon with an increased slope and enhanced prediction; and (4) the results of sensitivity analysis showed that multilocus genetic interaction with the environment had a better explanatory power and stability for depression than single polymorphism studies. CONCLUSION MGPS provides substantial power to examine gene-environmental interactions linked to affective outcomes among adolescents.
Collapse
Affiliation(s)
- Zihao Zeng
- School of Educational Science, Hunan Normal University, Changsha 410081, China; Department of Clinical Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, the Netherlands
| | - Liyi Peng
- School of Educational Science, Hunan Normal University, Changsha 410081, China
| | - Shuangjin Liu
- School of Educational Science, Hunan Normal University, Changsha 410081, China
| | - Qin Yang
- School of Educational Science, Hunan Normal University, Changsha 410081, China
| | - Hongcai Wang
- School of Educational Science, Hunan Normal University, Changsha 410081, China
| | - Zhen He
- School of Educational Science, Hunan Normal University, Changsha 410081, China
| | - Yiqiu Hu
- School of Educational Science, Hunan Normal University, Changsha 410081, China; Research Center for Mental Health Education of Hunan Province, Changsha 410100, China; Cognition and Human Behavior Key Laboratory of Hunan Province, Changsha 410081, China; Center for Mind-Brain Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
6
|
Wang F, Luo D, Chen J, Pan C, Wang Z, Fu H, Xu J, Yang M, Mo S, Zhuang L, Wang W. Influence of TPH2 and HTR1A polymorphisms on lifelong premature ejaculation risk among the chinese Han population. BMC Urol 2023; 23:86. [PMID: 37161455 PMCID: PMC10170821 DOI: 10.1186/s12894-023-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Lifelong premature ejaculation (LPE) is one of the most common ejaculatory dysfunctions in men. The serotonin (5-HT) synthesis rate-limiting enzyme (TPH2) and receptor (HTR1A) in the 5-HT regulatory system may play a key role in the pathogenesis of LPE. However, there are few studies on the effects of TPH2 and HTR1A polymorphisms on LPE risk. We speculated that TPH2 and HTR1A polymorphisms may affect the occurrence and development of LPE in the Chinese Han population. METHODS In this study, 91 patients with LPE and 362 normal controls aged 18 to 64 years were enrolled in the male urology department of Hainan General Hospital in China from January 2016 to December 2018. The SNPs in HTR1A and TPH2, which are related to 5-HT regulation, were selected as indexes to genotype the collected blood samples of participants. Logistic regression was used to analyze the correlation between SNPs of HTR1A and TPH2 with LPE susceptibility, as well as the relationship with leptin, 5-HT and folic acid levels. RESULTS The results revealed that HTR1A-rs6295 increased LPE risk in recessive model. Rs11178996 in TPH2 significantly reduced susceptibility to LPE in allelic (odds ratio (OR) = 0.68, 95% confidence interval (95% CI) = 0.49-0.96, p = 0.027), codominant (OR = 0.58, 95% CI = 0.35-0.98, p = 0.040), dominant (OR = 0.58, 95% CI = 0.36-0.92, p = 0.020), and additive (OR = 0.71, 95% CI = 0.52-0.98, p = 0.039) models. Grs11179041Trs10879352 could reduce the risk of LPE (OR = 0.44, 95% CI = 0.22-0.90, p = 0.024) by haplotype analysis. CONCLUSION HTR1A-rs6295 and TPH2-rs11178996 are associated with LPE risk in the Chinese Han population based on the finding of this study.
Collapse
Affiliation(s)
- Fei Wang
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Defan Luo
- Department of Lung Transplatation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571199, China
| | - Jianxiang Chen
- Department of Urology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Cuiqing Pan
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Zhongyao Wang
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Housheng Fu
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Jianbing Xu
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China
| | - Meng Yang
- Department of Kidney Transplatation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 571199, China
| | - Shaowei Mo
- Ministry of Science and Education, Hainan Women and Children's Medical Center, Haikou, Hainan, 571100, China
| | - Liying Zhuang
- Library, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Weifu Wang
- Department of Urology, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China.
| |
Collapse
|
7
|
Massoud S, Salmanian M, Tabibian M, Ghamari R, Tavabe Ghavami TS, Alizadeh F. The contribution of the 5-hydroxytryptamine receptor 2 A gene polymorphisms rs6311 and rs6313 to Schizophrenia in Iran. Mol Biol Rep 2023; 50:2633-2639. [PMID: 36639522 DOI: 10.1007/s11033-022-08222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Schizophrenia is an acute mental disorder with an undefined etiology. Its high heritability suggests that several genetic variants and polymorphisms may contribute to the severity and emergence of its symptoms. Former molecular evidence has shed some light on the association of serotonergic pathway genetic polymorphisms with schizophrenia. This study aimed to investigate the association between schizophrenia and two SNPs from one haplotype block, which lies in the 5-hydroxytryptamine receptor 2 A (5-HTR2A) gene in the Iranian population. MATERIAL AND METHODS Blood samples were collected from one-hundred and fifty-two patients diagnosed with schizophrenia and one-hundred and fifty-eight cases of the healthy control, who were matched in terms of age and gender. The participants were genotyped for rs6311 and rs6313 using PCR-RFLP. R programming language and Haploview software were respectively leveraged for statistical and haplotype inferencing. RESULTS The results showed that there was no significant association between rs6313 and schizophrenia. However, the rs6311 T allele was independently associated with schizophrenia, and it was significantly associated with SCZ in an rs6311-rs6313 haplotype. Moreover, the general linear model confirmed the potential predictor role of rs6311 for schizophrenia and the C allele of rs6313 demonstrated a higher frequency among females compared to males. CONCLUSION The findings of this study indicated the association of rs6311 and rs6311-rs6313 haplotype with schizophrenia in the Iranian population and also suggested a potential schizophrenia risk predictor role for rs6311.
Collapse
Affiliation(s)
- Sareh Massoud
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salmanian
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Rana Ghamari
- Department of Genetics, Faculty of Biology, Kharazmi University, Tehran, Iran
| | | | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhou L, Cai M, Ren Y, Wu H, Liu M, Chen H, Shang J. The different roles of 5-HT1A/2A receptors in fluoxetine ameliorated pigmentation of C57BL/6 mouse skin in response to stress. J Dermatol Sci 2018; 92:222-229. [PMID: 30527375 DOI: 10.1016/j.jdermsci.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND 5-HT1A receptor was participated in fluoxetine induced melanogenesis in melanocytes and in normal C57BL/6 mice, but we know little about whether other 5-HT receptors are involved in regulation of fluoxetine promotes pigmentation. OBJECTIVE To investigate the role of 5-HT receptors in regulation of fluoxetine ameliorates chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) induce hypopigmentation in C57BL/6 mice. METHODS CUMS and CRS were used to induce depigmentation in mice and evaluate the effect of fluoxetine. Western blot, immunohistochemistry and Q-PCR assay were used to determine the levels of protein and mRNA. Masson Fontana staining was used for melanin staining and FITC-Phalloidin staining was used to detect the expression of F-actin. Zebrafish and B16F10 cells were used for the mechanism research. RESULTS Fluoxetine (2.6 mg/kg, ig) ameliorated hypopigmentation induced by CUMS and CRS in mice, significantly increased the mRNA and protein levels of 5-HT1 A and 5-HT2 A receptors in mice and B16F10 cells. The effect of fluoxetine on melanogenesis in B16F10 cells and zebrafish were inhibited by WAY100635 (a selective 5-HT1 A receptor antagonist) and ketanserin (a 5-HT2 A receptor antagonist), respectively. Activation of p38 MAPK signaling pathways was contributed to fluoxetine induced melanogenesis and inhibited by WAY100635, but not ketanserin. However, ketanserin selectively weakened the action of fluoxetine promoted migration and up-regulated Rab27a protein expression in B16F10 cells. CONCLUSIONS 5-HT1 A and 2 A receptors contribute to melanogenesis and migration property of fluoxetine. The newly revealed mechanism indicates that fluoxetine and its analogues may be a potential drug for treatment of depigmentation disorders.
Collapse
Affiliation(s)
- Liangliang Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Minxuan Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yingying Ren
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Huali Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Meng Liu
- Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Haijuan Chen
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, University of the Chinese Academy of Sciences, Xining 810008, PR China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Varoglu E, Seytanoglu A, Asilmaz E, Taneri B. Neurotransmitter receptor genotypes associated with mental and behavioral disorders. Per Med 2018; 14:327-338. [PMID: 29749833 DOI: 10.2217/pme-2016-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM Investigation of association studies within the field of mental and behavioral disorders is of value given their complex molecular etiology including epistatic interactions of multiple genes with small effects. MATERIALS & METHODS Utilizing biomedical text mining, associations are uncovered for all mental and behavioral conditions listed in Diagnostic and Statistical Manual of Mental Disorders Text Revision. Specifically, a computational pipeline is designed to retrieve neurotransmitter receptor variations from biomedical literature with a text mining approach, where unique polymorphisms are also mined. RESULTS Analyses of 1337 unique neurotransmitter receptors and 465 distinct conditions yield 1568 unique gene-disease associations. CONCLUSION This study takes an unconventional approach to association studies and generates a novel dataset of associations for disorders such as major depression and schizophrenia, which provides a global perspective for their genetic etiology.
Collapse
Affiliation(s)
- Ekrem Varoglu
- Department of Computer Engineering, Eastern Mediterranean University, Famagusta, North Cyprus 99628, Turkey
| | - Adil Seytanoglu
- Department of Biological Sciences, Eastern Mediterranean University, Famagusta, North Cyprus 99628, Turkey
| | | | - Bahar Taneri
- Department of Biological Sciences, Eastern Mediterranean University, Famagusta, North Cyprus 99628, Turkey.,Institute for Public Health Genomics, Department of Genetics & Cell Biology, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
The Association between 5HT2A T102C and Behavioral and Psychological Symptoms of Dementia in Alzheimer's Disease: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5320135. [PMID: 29349076 PMCID: PMC5733629 DOI: 10.1155/2017/5320135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023]
Abstract
The serotonin receptor gene (5-HT2A) has been reported to be a susceptible factor in behavioral and psychological symptoms of dementia (BPSD) in Alzheimer's disease (AD). However, previous results were conflicting. We aim to investigate the association of 5-HT2A T102C with BPSD in AD using a meta-analysis. Studies were collected using PubMed, Web of Science, the Cochrane Library databases, Chinese National Knowledge Infrastructure (CNKI), and Embase. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess associations. Nine studies with 1899 AD patients with/without BPSD were included in this meta-analysis. The 102C and CC genotypes were associated with psychosis in AD (102C: p < 0.00001, OR [95% CI] = 3.19 [2.12-4.79]; CC: p < 0.00001, OR [95% CI] = 7.24 [3.60-14.59]). The TT genotype was significantly associated with hallucinations, aberrant motor behavior, and psychosis in AD (hallucinations: p = 0.001, OR [95% CI] = 0.52 [0.36-0.77]; aberrant motor behavior: p = 0.03, OR [95% CI] = 0.58 [0.35-0.95]; and psychosis: p = 0.002, OR [95% CI] = 0.34 [0.17-0.67]). No association was observed between T102C alleles or genotypes and delusions, agitation/aggression, depression, and apathy (p > 0.05). Thus, the 5HT2A T102C might be a susceptible factor for hallucinations, aberrant motor behavior, and psychosis in AD. The potential mechanism of this polymorphism in BPSD in AD requires further exploration.
Collapse
|