1
|
Lin PBC, Wang PK, Pang CY, Hu WF, Tsai APY, Oblak AL, Liew HK. Moderate Ethanol Pre-treatment Mitigates ICH-Induced Injury via ER Stress Modulation in Rats. Front Mol Neurosci 2021; 14:682775. [PMID: 34248500 PMCID: PMC8267178 DOI: 10.3389/fnmol.2021.682775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that disrupts the normal neurological function of the brain. Clinical studies have reported a non-linear J-shaped association between alcohol consumption levels and the occurrence of cerebral stroke. Specifically, alcohol intoxication increases stroke incidence, while moderate alcohol pre-conditioning decreases stroke frequency and improves outcomes. Although alcohol pre-consumption is likely a crucial player in ICH, the underlying mechanism remains unclear. We performed 1-h alcohol pre-conditioning followed by ICH induction in Sprague-Dawley (SD) rats to investigate the role of alcohol pre-conditioning in ICH. Interestingly, behavioral test analysis found that ethanol intoxication (3 g/kg) aggravated ICH-induced neurological deficits, but moderate ethanol pre-conditioning (0.75 g/kg) ameliorated ICH-induced neurological deficits by reducing the oxidative stress and proinflammatory cytokines release. Moreover, we found that moderate ethanol pretreatment improved the striatal endoplasmic reticulum (ER) homeostasis by increasing the chaperone protein expression and reducing oxidative stress and apoptosis caused by ICH. Our findings show that the mechanism regulated by moderate ethanol pre-conditioning might be beneficial for ICH, indicating the importance of ER homeostasis, oxidative stress, and differential cytokines release in ICH.
Collapse
Affiliation(s)
- Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Po-Kai Wang
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wei-Fen Hu
- Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Andy Po-Yi Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan.,Neuro-Medical Scientific Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
2
|
Shi H, Su Z, Su H, Chen H, Zhang Y, Cheng Y. Mild hypothermia improves brain injury in rats with intracerebral hemorrhage by inhibiting IRAK2/NF-κB signaling pathway. Brain Behav 2021; 11:e01947. [PMID: 33319491 PMCID: PMC7821569 DOI: 10.1002/brb3.1947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To explore the effect of mild hypothermia on nerve injury by establishing a rat model of intracerebral hemorrhage (ICH), and to clarify the specific molecular mechanism of mild hypothermia in improving brain injury in ICH rats. METHODS The rat model of ICH was established by collagenase injection. The neurological deficit score (NDS), brain tissue water detection, and Nissl staining were applied to detect the degree of brain injury. ELISA was used to analyze the expression of proinflammatory cytokines and serum nerve injury indexes. Flow cytometry and Western Blot were used to detect neuronal apoptosis. RESULTS Mild hypothermia treatment significantly improved the brain injury of the ICH rats and down-regulated the inflammatory response and oxidative stress in the brain tissue. Moreover, mild hypothermia also effectively inhibited IRAK2/NF-κB signaling pathway and thus affect neuronal apoptosis. CONCLUSION Mild hypothermia alleviates inflammatory response and neuronal apoptosis by inhibiting IRAK2/NF-κB signaling pathway in the ICH rats thus improving brain injury.
Collapse
Affiliation(s)
- Hui Shi
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Zulu Su
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hai Su
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Chen
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Neurosurgery, YongChuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Research Progress of the Application of Hypothermia in the Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3897168. [PMID: 33381263 PMCID: PMC7758138 DOI: 10.1155/2020/3897168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Hypothermia is widely used in the medical field to protect organs or tissues from damage. Different research fields have different explanations of the protection mechanism of hypothermia. Hypothermia is also widely used in the field of ophthalmology, for example, in the eye bank, the preservation of corneal tissue and the preservation of the eyeball. Low temperature can also be applied to some ophthalmic diseases, such as allergic conjunctivitis, retinal ischemia, and retinal hypoxia. It is used to relieve eye symptoms or reduce tissue damage. Hypothermic techniques have important applications in ophthalmic surgery, such as corneal refractive surgery, vitrectomy surgery, and ciliary body cryotherapy for end-stage glaucoma. Hypothermia can reduce the inflammation of the cornea and protect the retinal tissue. The eyeball is a complex organ, including collagen tissue of the eyeball wall and retinal nerve tissue and retinal blood vessels. The mechanism of low temperature protecting eye tissue is complicated. It is important to understand the mechanism of hypothermia and its applications in ophthalmology. This review introduces the mechanism of hypothermia and its application in the eye banks, eye diseases (allergic conjunctivitis, retinal ischemia, and hypoxia), and eye surgeries (corneal transplant surgery, corneal refractive surgery, and vitrectomy).
Collapse
|
4
|
Protective effects of mild hypothermia against hepatic injury in rats with acute liver failure. Ann Hepatol 2020; 18:770-776. [PMID: 31422029 DOI: 10.1016/j.aohep.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/25/2019] [Accepted: 12/17/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Acute liver failure (ALF) is a severe disease which is associated with a high mortality rate. As mild hypothermia has been shown to have protective effects on the brain, this study aimed to determine whether it also provides protection to the liver in rats with ALF and to explore its underlying mechanism. MATERIALS AND METHODS In total, 72 rats were divided into 3 groups: control group (CG, treated with normal saline), normothermia group (NG, treated with d-galactosamine and lipopolysaccharide; d-GalN/LPS), and mild hypothermia group (MHG, treated with d-GalN/LPS and kept in a state of mild hypothermia, defined as an anal temperature of 32-35°C). The rats were examined at 4, 8, and 12h after treatment. RESULTS Mild hypothermia treatment significantly reduced serum alanine transaminase and aspartate transaminase levels and improved the liver condition of rats with d-GalN/LPS-induced ALF at 12h. Serum tumor necrosis factor-alpha levels were significantly lower in the MHG than in the NG at 4h, but no significant differences were observed in the interleukin-10 levels between the NG and MHG at any time. The serum and hepatic levels of high mobility group box 1 were significantly lower in the MHG than in the NG at 8 and 12h. The protein expression levels of cytochrome C and cleaved-caspase 3 in hepatic tissues were significantly lower in the MHG than in the NG at 8h. CONCLUSION Mild hypothermia improved the liver conditions of rats with ALF via its anti-inflammatory and anti-apoptotic effects.
Collapse
|
5
|
Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med 2019; 23:5846-5858. [PMID: 31273911 PMCID: PMC6714234 DOI: 10.1111/jcmm.14479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins (HSPs) are induced after haemorrhagic stroke, which includes subarachnoid haemorrhage (SAH) and intracerebral haemorrhage (ICH). Most of these proteins function as neuroprotective molecules to protect cerebral neurons from haemorrhagic stroke and as markers to indicate cellular stress or damage. The most widely studied HSPs in SAH are HSP70, haeme oxygenase-1 (HO-1), HSP20 and HSP27. The subsequent pathophysiological changes following SAH can be divided into two stages: early brain injury and delayed cerebral ischaemia, both of which determine the outcome for patients. Because the mechanisms of HSPs in SAH are being revealed and experimental models in animals are continually maturing, new agents targeting HSPs with limited side effects have been suggested to provide therapeutic potential. For instance, some pharmaceutical agents can block neuronal apoptosis signals or dilate cerebral vessels by modulating HSPs. HO-1 and HSP70 are also critical topics for ICH research, which can be attributed to their involvement in pathophysiological mechanisms and therapeutic potential. However, the process of HO-1 metabolism can be toxic owing to iron overload and the activation of succedent pathways, for example, the Fenton reaction and oxidative damage; the overall effect of HO-1 in SAH and ICH tends to be protective and harmful, respectively, given the different pathophysiological changes in these two types of haemorrhagic stroke. In the present study, we focus on the current understanding of the role and therapeutic potential of HSPs involved in haemorrhagic stroke. Therefore, HSPs may be potential therapeutic targets, and new agents targeting HSPs are warranted.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Tu Y, Guo C, Song F, Huo Y, Geng Y, Guo M, Bao H, Wu X, Fan W. Mild hypothermia alleviates diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis. Brain Res Bull 2019; 150:1-12. [PMID: 31082455 DOI: 10.1016/j.brainresbull.2019.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Diabetic patients manifest with more severe neurological deficits than non-diabetes after ischemic stroke. It has been shown that hypothermia has neuroprotective effects on cerebral ischemia, but whether it is effective for cerebral ischemia in diabetic patients remains unknown. The aim of this study was to investigate whether hypothermia can alleviate cerebral ischemic injury in diabetic rats and the regulation of autophagy and pyroptosis of the treatment. We introduced permanent middle cerebral artery occlusion (pMCAO) in a model of type 2 diabetic rats prepared by high-fat diet combined with intraperitoneal injection of STZ in vivo and mimicked cerebral ischemia with diabetes by employing high glucose stimulation and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Moreover, 3-methyladenine and bafilomycin A1 were used to evaluate the association between autophagy and pyroptosis in vitro. Our results showed that diabetes aggravated neurological deficits, increased the volume of cerebral infarction and brain edema as well as the blood brain barrier permeability after cerebral ischemia, which were alleviated by mild hypothermia. Compared with the pMCAO model in non-diabetic rats and OGD/R model without high glucose stimulation in vitro, the expression of P62, NOD-like receptor protein 3 (NLRP3), cleaved caspase-1 and Gasdermin-N increased and the ratio of microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ/Ⅰ decreased in the pMCAO model in diabetic rats and OGD/R model with high glucose stimulation, which could be reversed by mild hypothermia. In conclusion, mild hypothermia alleviated diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis.
Collapse
Affiliation(s)
- Yanling Tu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Cen Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Yajing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yang Geng
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China.
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China.
| |
Collapse
|
7
|
miR-181b regulates ER stress induced neuron death through targeting Heat Shock Protein A5 following intracerebral haemorrhage. Immunol Lett 2018; 206:1-10. [PMID: 30503822 DOI: 10.1016/j.imlet.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress acts as a protein folding and contributes to neuronal damage and neurological deterioration following intracerebral hemorrhage (ICH). Heat Shock Protein A5 (HSPA5) serves as an essential regulator of the endoplasmic reticulum (ER) stress response. However, the specific mechanism has not been will identified. Primary cortical neurons from C57BL/6 mice were subjected to erythrocyte lysates. Cell viability, microRNA and HSPA5 levels, and ER stress was detected. The interaction between microRNA and the target HSPA5 was identified by dual luciferase reporter gene assay. In addition, inflammatory cytokines, brain edema, and neurological functions in ICH mice were also assessed. Erythrocyte lysates induced ER stress and neuron damage, downregulated miR-181b and upregulated HSPA5 levels. MiR-181b suppressed HSPA5 expression by directly binding its 3'-untranslated region. Correspondingly, our data demonstrated that overexpression of miR-181b attenuated erythrocyte lysates induced neuronal necrosis and apoptosis. In vivo, downregulated miR-181b increased the HSPA5 level, along with significant elevations of pro-inflammatory cytokines, brain edema, and neurological injury following ICH. HSPA5 pathway plays an important role in ER stress induced brain damage following ICH. In addition, miR-181b has neuroprotective effects that alleviates neurological injury and represents a promising therapeutic strategy in ICH.
Collapse
|
8
|
Xia Z, Wang W, Xiao Q, Ye Q, Zhang X, Wang Y. Mild Hypothermia Protects Renal Function in Ischemia-reperfusion Kidney: An Experimental Study in Mice. Transplant Proc 2018; 50:3816-3821. [PMID: 30577273 DOI: 10.1016/j.transproceed.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Mild hypothermia reduces the damage caused by hypoxia and oxidative stress, but how this happens is not very clear. Mice were anesthetized and their core body temperature was maintained at 38 ± 0.5°C and 32 ± 0.5°C. The renal artery and renal veins were blocked for 35 minutes and reperfusion was performed. Twenty-four hours later, serum was obtained to detect the concentrations of creatinine. The expression of CIRP, TRX, Bcl-2, and Bax were detected in tissue samples using Western blot. Apoptosis was measured using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and the apoptosis rates were calculated. SOD and MDA were detected to determine the extent of oxidative damage in different groups. The concentration of creatinine in the NC group was 2.11 ± 0.39 mg/dL. Compared to the IR group, the concentration of creatinine decreased in MH+IR group and showed a significant statistical difference (8.74 ± 1.38 mg/dL vs 15.36 ± 2.13 mg/dL, P < .01); the apoptosis rate also decreased with statistical significance (15.02 ± 1.45% vs 37.02 ± 5.70%, P < .01). Compared to the IR group, the expression of CIRP, TRX, and the Bcl-2/Bax ratio significantly increased in the MH+IR group. The SOD activity in the MH+IR group increased (26.90 ± 4.41 U/mgprot vs 16.85 ± 2.41 U/mgprot, P < .05) and the MDA level decreased (0.76 ± 0.18 nmol/mgprot vs 1.37 ± 0.32 nmol/mgprot, P < .05) compared to those of the IR group. Mild hypothermia protects mice kidneys from ischemia-reperfusion damage by reducing oxidative stress injury and apoptosis.
Collapse
Affiliation(s)
- Z Xia
- 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, P.R. China
| | - W Wang
- Zhongnan Hospital, Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, P.R. China
| | - Q Xiao
- 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, P.R. China
| | - Q Ye
- 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, P.R. China; Zhongnan Hospital, Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, P.R. China.
| | - X Zhang
- Zhongnan Hospital, Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, P.R. China
| | - Y Wang
- Zhongnan Hospital, Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, P.R. China
| |
Collapse
|
9
|
Song F, Guo C, Geng Y, Wu X, Fan W. Therapeutic time window and regulation of autophagy by mild hypothermia after intracerebral hemorrhage in rats. Brain Res 2018; 1690:12-22. [PMID: 29649465 DOI: 10.1016/j.brainres.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Although recent studies have shown that mild hypothermia has neuroprotective effects on intracerebral hemorrhage (ICH), the therapeutic time window of the therapy and the role of autophagy as a potential neuroprotective mechanism remain unclear. This study was aimed to investigate the appropriate time window of mild hypothermia and the regulation of autophagy during the treatment in a rat model of autologous blood-injected ICH injury. The rats were divided into Sham, normothermic (NT) and hypothermic (HT) groups. HT groups received mild hypothermia (33 °C-35 °C) for 48 h starting from 3 h (HT3), 6 h (HT6), and 12 h (HT12) respectively after ICH. The neurological function, brain edema, blood brain barrier (BBB) permeability and volume of tissue loss were tested. The expression of metrix metalloproteinase 9 (MMP-9) and tight junction (TJ) protein including Occludin and Claudin-5 around the hematoma were detected by Western blot. Moreover, autophagy after ICH was detected by the ratio of LC3B-II/I, and the expression of Beclin-1 and p62, while apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dURP nick end labelling (TUNEL) staining and expression of Bcl-2, Bim, cleaved Caspase-3. Compared with NT group, neurological deficit, brain edema and BBB permeability were attenuated in HT6 and HT12 groups, but not in HT3 group, while volume of tissue loss was reduced only in HT12 group. The expression of MMP-9 and the degradation of Occludin and Claudin-5 were suppressed only in HT6 and HT12 groups, especially in the latter one. Moreover, neuronal autophagy and apoptosis induced by ICH were downregulated in HT12 group. The results suggested that mild hypothermia initiated at 6 h or 12 h post-injury was neuroprotective in ICH model of rats, especially at 12 h post-injury, via suppression of autophagy upregulated by ICH.
Collapse
Affiliation(s)
- Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Cen Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Yang Geng
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China.
| |
Collapse
|
10
|
Qiu J, Wang X, Wu F, Wan L, Cheng B, Wu Y, Bai B. Low Dose of Apelin-36 Attenuates ER Stress-Associated Apoptosis in Rats with Ischemic Stroke. Front Neurol 2017; 8:556. [PMID: 29085332 PMCID: PMC5650706 DOI: 10.3389/fneur.2017.00556] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury-induced cellular apoptosis contributes to neuronal death in ischemic stroke, while endoplasmic reticulum stress (ERS) and subsequently triggered unfolded protein response (UPR) are the major mechanisms of cerebral I/R injury-induced apoptosis. A number of studies indicated that apelin-13 protects neurons from I/R injury-induced apoptosis. Apelin-36, the longest isoform of apelin, has stronger affinity to apelin receptor than apelin-13 does. However, the role of apelin-36 in ischemic stroke is less studied. In addition, preventive administration of apelin was applied in most studies, which could not precisely reflect its therapeutic potential in ischemic stroke. Here, we first reported that low dose of apelin-36, other than apelin-13, administrated after ischemic stroke significantly reduced infarct volume in rats. Moreover, apelin-36 attenuated cerebral I/R injury-induced apoptosis and caspase-3 activation. Furthermore, apelin-36 suppressed I/R injury-induced CHOP and GRP78 elevation, indicating that apelin-36 inhibited ERS/UPR activation. Our study first demonstrated that post-stroke administration of low-dose apelin-36 could attenuate cerebral I/R injury-induced infarct and apoptosis, which is associated with the inhibition of cerebral I/R injury-induced ERS/UPR activation. Our data support the therapeutic potential of apelin-36 in ischemic stroke although further investigation is needed.
Collapse
Affiliation(s)
- Jian Qiu
- School of Medicine, Shandong University, Jinan, China.,Institute of Neurobiology, Jining Medical University, Jining, China
| | - Xin Wang
- Department of Psychiatry, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical University, Jining, China
| | - Fei Wu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Lei Wan
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Baohua Cheng
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Bo Bai
- Institute of Neurobiology, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Ma SP, Ju F, Zhang YP, Shi X, Zhuang RJ, Xue H, Ma J, Wang L, Cheng BF, Cao H, Feng ZW, Wang M, Yang HJ. Cold-inducible protein RBM3 protects neuroblastoma cells from retinoic acid-induced apoptosis via AMPK, p38 and JNK signaling. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Establishment of an ideal time window model in hypothermic-targeted temperature management after traumatic brain injury in rats. Brain Res 2017. [PMID: 28629741 DOI: 10.1016/j.brainres.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although hypothermic-targeted temperature management (HTTM) holds great potential for the treatment of traumatic brain injury (TBI), translation of the efficacy of hypothermia from animal models to TBI patientshas no entire consistency. This study aimed to find an ideal time window model in experimental rats which was more in accordance with clinical practice through the delayed HTTM intervention. Sprague-Dawley rats were subjected to unilateral cortical contusion injury and received therapeutic hypothermia at 15mins, 2 h, 4 h respectively after TBI. The neurological function was evaluated with the modified neurological severity score and Morris water maze test. The brain edema and morphological changes were measured with the water content and H&E staining. Brain sections were immunostained with antibodies against DCX (a neuroblast marker) and GFAP (an astrocyte marker). The apoptosis levels in the ipsilateral hippocampi and cortex were examined with antibodies against the apoptotic proteins Bcl-2, Bax, and cleaved caspase-3 by the immunofluorescence and western blotting. The results indicated that each hypothermia therapy group could improve neurobehavioral and cognitive function, alleviate brain edema and reduce inflammation. Furthermore, we observed that therapeutic hypothermia increased DCX expression, decreased GFAP expression, upregulated Bcl-2 expression and downregulated Bax and cleaved Caspase-3 expression. The above results suggested that HTTM at 2h or even at 4h post-injury revealed beneficial brain protection similarly, despite the best effect at 15min post-injury. These findings may provide relatively ideal time window models, further making the following experimental results more credible and persuasive.
Collapse
|