1
|
Bacha R, Alwisi N, Ismail R, Pedersen S, Al-Mansoori L. Unveiling GATA3 Signaling Pathways in Health and Disease: Mechanisms, Implications, and Therapeutic Potential. Cells 2024; 13:2127. [PMID: 39768217 PMCID: PMC11674286 DOI: 10.3390/cells13242127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
GATA binding protein 3 (GATA3), a member of the GATA family transcription factors, is a key player in various physiological and pathological conditions. It is known for its ability to bind to the DNA sequence "GATA", which enables its key role in critical processes in multiple tissues and organs including the immune system, endocrine system, and nervous system. GATA3 also modulates cell differentiation, proliferation, and apoptosis via controlling gene expression. In physiological instances, GATA3 is crucial for maintaining immunological homeostasis by mediating the development of naïve T cells into T helper 2 (Th2). In addition, GATA3 has been demonstrated to play a variety of cellular roles in the growth and maintenance of mammary gland, neuronal, and renal tissues. Conversely, the presence of impaired GATA3 is associated with a variety of diseases, including neurodegenerative diseases, autoimmune diseases, and cancers. Additionally, the altered expression of GATA3 contributes to the worsening of disease progression in hematological malignancies, such as T-cell lymphomas. Therefore, this review explores the multifaceted roles and signaling pathways of GATA3 in health and disease, with a particular emphasis on its potential as a therapeutic and prognostic target for the effective management of diseases.
Collapse
Affiliation(s)
- Rim Bacha
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nouran Alwisi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Rana Ismail
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
3
|
Cho YS, Kim DH, Bae JY, Son JY, Kim JH, Afridi R, Suk K, Ahn DK, Bae YC. Structural reorganization of medullary dorsal horn astrocytes in a rat model of neuropathic pain. Brain Struct Funct 2024; 229:1757-1768. [PMID: 39052094 DOI: 10.1007/s00429-024-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.
Collapse
Affiliation(s)
- Yi Sul Cho
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Do Hyoung Kim
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Young Bae
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jo Young Son
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Kuk Ahn
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| | - Yong Chul Bae
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Ramírez-López A, Pastor A, de la Torre R, La Porta C, Ozaita A, Cabañero D, Maldonado R. Role of the endocannabinoid system in a mouse model of Fragile X undergoing neuropathic pain. Eur J Pain 2021; 25:1316-1328. [PMID: 33619843 DOI: 10.1002/ejp.1753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuropathic pain is a complex condition characterized by sensory, cognitive and affective symptoms that magnify the perception of pain. The underlying pathogenic mechanisms are largely unknown and there is an urgent need for the development of novel medications. The endocannabinoid system modulates pain perception and drugs targeting the cannabinoid receptor type 2 (CB2) devoid of psychoactive side effects could emerge as novel analgesics. An interesting model to evaluate the mechanisms underlying resistance to pain is the fragile X mental retardation protein knockout mouse (Fmr1KO), a model of fragile X syndrome that exhibits nociceptive deficits and fails to develop neuropathic pain. METHODS A partial sciatic nerve ligation was performed to wild-type (WT) and Fmr1KO mice having (HzCB2 and Fmr1KO-HzCB2, respectively) or not (WT and Fmr1KO mice) a partial deletion of CB2 to investigate the participation of the endocannabinoid system on the pain-resistant phenotype of Fmr1KO mice. RESULTS Nerve injury induced canonical hypersensitivity in WT and HzCB2 mice, whereas this increased pain sensitivity was absent in Fmr1KO mice. Interestingly, Fmr1KO mice partially lacking CB2 lost this protection against neuropathic pain. Similarly, pain-induced depressive-like behaviour was observed in WT, HzCB2 and Fmr1KO-HzCB2 mice, but not in Fmr1KO littermates. Nerve injury evoked different alterations in WT and Fmr1KO mice at spinal and supra-spinal levels that correlated with these nociceptive and emotional alterations. CONCLUSIONS This work shows that CB2 is necessary for the protection against neuropathic pain observed in Fmr1KO mice, raising the interest in targeting this receptor for the treatment of neuropathic pain. SIGNIFICANCE Neuropathic pain is a complex chronic pain condition and current treatments are limited by the lack of efficacy and the incidence of important side effects. Our findings show that the pain-resistant phenotype of Fmr1KO mice against nociceptive and emotional manifestations triggered by persistent nerve damage requires the participation of the cannabinoid receptor CB2, raising the interest in targeting this receptor for neuropathic pain treatment. Additional multidisciplinary studies more closely related to human pain experience should be conducted to explore the potential use of cannabinoids as adequate analgesic tools.
Collapse
Affiliation(s)
- Angela Ramírez-López
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Antoni Pastor
- IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Carmen La Porta
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
5
|
Zuo S, Shi G, Fan J, Fan B, Zhang X, Liu S, Hao Y, Wei Z, Zhou X, Feng S. Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Exp Ther Med 2020; 21:48. [PMID: 33273976 PMCID: PMC7706384 DOI: 10.3892/etm.2020.9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Schwann cells are unique glial cells in the peripheral nervous system. These cells provide a range of cytokines and nutritional factors to maintain axons and support axonal regeneration. However, little is known concerning adhesion-associated epigenetic changes that occur in Schwann cells after peripheral nerve injury (PNI). In the present study, adhesion-associated DNA methylation biomarkers were assessed between normal and injury peripheral nerve. Specifically, normal Schwann cells (NSCs) and activated Schwann cells (ASCs) were obtained from adult Wistar rats. After the Schwann cells were identified, proliferation and adhesion assays were used to assess differences between NSCs and ASCs. Methylated DNA immunoprecipitation-sequencing and bioinformatics analysis were used to identify and analyze the differentially methylated genes. Reverse transcription-quantitative PCR was performed to assess the expression levels of adhesion-associated genes. In the present study, the proliferation and adhesion assays demonstrated that ASCs had a more robust proliferative activity and adhesion compared with NSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify methylation-associated biological processes and signaling pathways. Protein-protein interaction network analysis revealed that Fyn, Efna1, Jak2, Vav3, Flt4, Epha7, Crk, Kitlg, Ctnnb1 and Ptpn11 were potential markers for Schwann cell adhesion. The expression levels of several adhesion-associated genes, such as vinculin, BCAR1 scaffold protein, collagen type XVIII α1 chain and integrin subunit β6, in ASCs were altered compared with those in NSCs. The current study analyzed adhesion-associated DNA methylation patterns of Schwann cells and identified candidate genes that may potentially regulate Schwann cell adhesion in Wistar rats before and after PNI.
Collapse
Affiliation(s)
- Shanhuai Zuo
- Department of Radiology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guidong Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jianchao Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
6
|
Kubíčková L, Klusáková I, Dubový P. Bilateral activation of glial cells and cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis of trigeminal neuropathic pain model. Histochem Cell Biol 2020; 153:239-255. [PMID: 32020274 DOI: 10.1007/s00418-020-01850-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Glial cells activated by peripheral nerve injury contribute to the induction and maintenance of neuropathic pain by releasing neuromodulating cytokines and chemokines. We investigated the activation of microglia and astrocytes as well as the cellular distribution of the chemokine CCL2 and its receptor CCR2 in the trigeminal subnucleus caudalis (TSC) ipsilateral and contralateral to infraorbital nerve ligature (IONL). The left infraorbital nerve was ligated under aseptic conditions, and sham controls were operated without nerve ligature. Tactile hypersensitivity was significantly increased bilaterally in vibrissal pads of both sham- and IONL-operated animals from day 1 to 7 and tended to normalize in sham controls surviving for 14 days. Activated microglial cells significantly increased bilaterally in the TSC of both sham- and IONL-operated animals with a marked but gradual increase in the ipsilateral TSC from 1 to 7 days followed by a decrease by day 14. In contrast, robust activation of astrocytes was found bilaterally in the TSC of IONL-operated rats from 3 to 14 days with a transient activation in the ipsilateral TSC of sham-operated animals. Cellular distribution of CCL2 varied with survival time. CCL2 immunofluorescence was detected in neurons within 3 days and in astrocytes at later time points. In contrast, CCR2 was found only in astrocytes at all time points with CCR2 intensity being dominant in the ipsilateral TSC. In summary, our results reveal bilateral activation of microglial cells and astrocytes as well as changes in the cellular distribution of CCL2 and its receptor CCR2 in the TSC during the development and maintenance of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Ilona Klusáková
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| |
Collapse
|
7
|
Planas-Fontánez TM, Dreyfus CF, Saitta KS. Reactive Astrocytes as Therapeutic Targets for Brain Degenerative Diseases: Roles Played by Metabotropic Glutamate Receptors. Neurochem Res 2020; 45:541-550. [PMID: 31983009 PMCID: PMC7058558 DOI: 10.1007/s11064-020-02968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are well known to play critical roles in the development and maintenance of the central nervous system (CNS). Moreover, recent reports indicate that these cells are heterogeneous with respect to the molecules they express and the functions they exhibit in the quiescent or activated state. Because astrocytes also contribute to pathology, promising new results raise the possibility of manipulating specific astroglial populations for therapeutic roles. In this mini-review, we highlight the function of metabotropic glutamate receptors (mGluRs), in particular mGluR3 and mGluR5, in reactive astrocytes and relate these to three degenerative CNS diseases: multiple sclerosis, Alzheimer's disease and Amyotrophic Lateral Sclerosis. Previous studies demonstrate that effects of these receptors may be beneficial, but this varies depending on the subtype of receptor, the state of the astrocytes, and the specific disease to which they are exposed. Elucidating the role of mGluRs on astrocytes at specific times during development and disease will provide novel insights in understanding how to best use these to serve as therapeutic targets.
Collapse
Affiliation(s)
- Talia M. Planas-Fontánez
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| | - Cheryl F. Dreyfus
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 361, Piscataway, NJ 08854 USA
| | - Kyle S. Saitta
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| |
Collapse
|
8
|
Erdogan O, Malek M, Janal MN, Gibbs JL. Sensory testing associates with pain quality descriptors during acute dental pain. Eur J Pain 2019; 23:1701-1711. [DOI: 10.1002/ejp.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ozge Erdogan
- Department of Endodontics New York University College of Dentistry New York New York
- Department of Endodontics Faculty of Dentistry, Hacettepe University Ankara Turkey
| | - Matthew Malek
- Department of Endodontics New York University College of Dentistry New York New York
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion New York University College of Dentistry New York New York
| | - Jennifer L. Gibbs
- Department of Endodontics New York University College of Dentistry New York New York
- Department of Restorative Dentistry and Biomaterials Sciences Harvard School of Dental Medicine Boston Massachusetts
| |
Collapse
|
9
|
Ding W, You Z, Shen S, Yang J, Lim G, Doheny JT, Zhu S, Zhang Y, Chen L, Mao J. Increased HCN Channel Activity in the Gasserian Ganglion Contributes to Trigeminal Neuropathic Pain. THE JOURNAL OF PAIN 2018; 19:626-634. [PMID: 29366880 PMCID: PMC5972061 DOI: 10.1016/j.jpain.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
Orofacial neuropathic pain caused by trigeminal nerve injury is a debilitating condition with limited therapeutic options. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are involved in the development and maintenance of chronic pain. However, the effect of HCN channel activity in the Gasserian ganglion on trigeminal neuropathic pain has not been examined. We evaluated nociceptive behaviors after microinjection of the HCN channel blockers ZD7288 or ivabradine into the Gasserian ganglion in rats with trigeminal nerve injury. Both blockers dose-dependently ameliorated evoked and spontaneous nociceptive behavior in rats with trigeminal neuropathic pain. Moreover, the clinically available HCN channel blocker ivabradine showed a prolonged antinociceptive effect. In the Gasserian ganglion, HCN1 and HCN2 are major HCN isoforms. After trigeminal nerve injury, the counts of HCN1 as well as HCN2 immuno-positive punctae were increased in the ipsilateral Gasserian ganglions. These results indicate that the increased HCN channel activity in the Gasserian ganglion directly contributes to neuropathic pain resulting from trigeminal nerve injury. PERSPECTIVE Trigeminal nerve damage-induced orofacial pain is severe and more resistant to standard pharmacological treatment than other types of neuropathic pain. Our study suggests that targeting HCN channel activities in the Gasserian ganglion may provide an alternative treatment of trigeminal neuropathy including trigeminal neuralgia.
Collapse
Affiliation(s)
- Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason T Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shengmei Zhu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yi Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Wang JY, Gao YH, Qiao LN, Zhang JL, Duan-mu CL, Yan YX, Chen SP, Liu JL. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:74. [PMID: 29466978 PMCID: PMC5822602 DOI: 10.1186/s12906-018-2134-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/09/2018] [Indexed: 02/14/2023]
Abstract
Background Cumulated evidence reveals that glial cells in the spinal cord play an important role in the development of chronic neuropathic pain and are also complicated in the analgesic effect of EA intervention. But the roles of microgliacytes and astrocytes of spinal cord in the process of EA analgesia remain unknown. Methods A total of 120 male Wistar rats were used in the present study. The neuropathic pain model was established by chronic constrictive injury (CCI) of the sciatic nerve. The rats were randomly divided into sham group, CCI group, and sham CCI + EA group, and CCI + EA group. EA was applied to bilateral Zusanli (ST36)-Yanlingquan (GB34). The mechanical (both time and force responses) and thermal pain thresholds (PTs) of the bilateral hind-paws were measured. The number of microgliacytes and activity of astrocytes in the dorsal horns (DHs) of lumbar spinal cord (L4–5) were examined by immunofluorescence staining, and the expression of glial fibrillary acidic protein (GFAP) protein was detected by western blot. Results Following CCI, both mechanical and thermal PTs of the ipsilateral hind-paw were significantly decreased beginning from the 3rd day after surgery (P < 0.05), and the mechanical PT of the contralateral hind-paw was considerably decreased from the 6th day on after surgery (P < 0.05). CCI also significantly upregulated the number of Iba-1 labeled microgliacytes and the fluorescence intensity of glial fibrillary acidic protein (GFAP) -labeled astrocyte in the superficial laminae of DHs on bilateral sides (P < 0.05). After repeated EA, the mechanical and thermal PTs at bilateral hind-paws were significantly relieved (P < 0.05). The increased of number of microgliacytes was markedly suppressed by 2 days’ EA intervention, and the average fluorescence intensity was suppressed by 2 weeks’ EA. The expression of GFAP protein were down-regulated by 1 and 2 weeks’ EA treatment, respectively (P < 0.05). Conclusions Repeated EA can relieve neuropathic pain and mirror-image pain in chronic neuropathic pain rats, which is probably associated with its effect in downregulating glial cell activation of the lumbar spinal cord, the microgliacyte first and astrocyte later.
Collapse
|
11
|
Zhao L, Li D, Liu N, Liu L, Zhang Z, Gao C, Kawano H, Zhou FY, Li HP. Correlation of TGN-020 with the analgesic effects via ERK pathway activation after chronic constriction injury. Mol Pain 2018; 14:1744806918796057. [PMID: 30152258 PMCID: PMC6113736 DOI: 10.1177/1744806918796057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular regulated protein kinase (ERK) pathway activation in astrocytes and neurons has been reported to be critical for neuropathic pain development after chronic constriction injury. TGN-020 was found to be the most potent aquaporin 4 inhibitor among the agents studied. The present study aimed to assess whether the inhibition of aquaporin 4 had an analgesic effect on neuropathic pain and whether the inhibition of astrocytic activation and ERK pathway was involved in the analgesic effect of TGN-020. We thus found that TGN-020 upregulated the threshold of thermal and mechanical allodynia, downregulated the expression of interleukin-1β, interleukin-6, and tumor necrosis factor-α, attenuated the astrocytic activation and suppressed the activation of mitogen-activated protein kinase pathways in the spinal dorsal horn and dorsal root ganglion. Additionally, TGN-020 suppressed ERK phosphorylation in astrocytes and neurons after injury. The findings suggested that the analgesic effects of TGN-020 in neuropathic pain were mediated mainly by the downregulation of chronic constriction injury-induced astrocytic activation and inflammation, which is via the inhibition of ERK pathway in the spinal dorsal horn and dorsal root ganglion.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
- Department of Orthopedic Surgery, Shenyang Fifth People’s
Hospital, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Nan Liu
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Lu Liu
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Chao Gao
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Hitoshi Kawano
- Department of Health and Dietetics, Faculty of Health and
Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Fang-Yuan Zhou
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences,
China Medical University, Shenyang, China
| |
Collapse
|