1
|
Russo EB, Whiteley VL. Cannabinoid hyperemesis syndrome: genetic susceptibility to toxic exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1465728. [PMID: 39507417 PMCID: PMC11537899 DOI: 10.3389/ftox.2024.1465728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Cannabinoid hyperemesis syndrome presents as a complex of symptoms and signs encompassing nausea, vomiting, abdominal pain, and hot water bathing behavior, most typically in a heavy cannabis user. Its presentation is frequently associated with hypothalamic-pituitary-adrenal axis activation with stress and weight loss. Recent investigation has identified five statistically significant mutations in patients distinct from those of frequent cannabis users who lack the symptoms, affecting the TRPV1 receptor, two dopamine genes, the cytochrome P450 2C9 enzyme that metabolizes tetrahydrocannabinol, and the adenosine triphosphate-binding cassette transporter. The syndrome is associated with escalating intake of high potency cannabis, or alternatively, other agonists of the cannabinoid-1 receptor including synthetic cannabinoids. Some patients develop environmental triggers in scents or foods that suggest classical conditioned responses. Various alternative "causes" are addressed and refuted in the text, including exposure to pesticides, neem oil or azadirachtin. Nosological confusion of cannabinoid hyperemesis syndrome has arisen with cyclic vomiting syndrome, whose presentation and pathophysiology are clearly distinct. The possible utilization of non-intoxicating antiemetic cannabis components in cannabis for treatment of cannabinoid hyperemesis syndrome is addressed, along with future research suggestions in relation to its genetic foundation and possible metabolomic signatures.
Collapse
|
2
|
Ramakrishnan A, Piehl N, Simonton B, Parikh M, Zhang Z, Teregulova V, van Olst L, Gate D. Epigenetic dysregulation in Alzheimer's disease peripheral immunity. Neuron 2024; 112:1235-1248.e5. [PMID: 38340719 PMCID: PMC11031321 DOI: 10.1016/j.neuron.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The peripheral immune system in Alzheimer's disease (AD) has not been thoroughly studied with modern sequencing methods. To investigate epigenetic and transcriptional alterations to the AD peripheral immune system, we used single-cell sequencing strategies, including assay for transposase-accessible chromatin and RNA sequencing. We reveal a striking amount of open chromatin in peripheral immune cells in AD. In CD8 T cells, we uncover a cis-regulatory DNA element co-accessible with the CXC motif chemokine receptor 3 gene promoter. In monocytes, we identify a novel AD-specific RELA transcription factor binding site adjacent to an open chromatin region in the nuclear factor kappa B subunit 2 gene. We also demonstrate apolipoprotein E genotype-dependent epigenetic changes in monocytes. Surprisingly, we also identify differentially accessible chromatin regions in genes associated with sporadic AD risk. Our findings provide novel insights into the complex relationship between epigenetics and genetic risk factors in AD peripheral immunity.
Collapse
Affiliation(s)
- Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Natalie Piehl
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brooke Simonton
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milan Parikh
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyang Zhang
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Teregulova
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Paseban T, Alavi MS, Etemad L, Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin Ther Targets 2023; 27:531-552. [PMID: 37428709 DOI: 10.1080/14728222.2023.2235718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/09/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Cholesterol homeostasis is critical for normal brain function. It is tightly controlled by various biological elements. ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that effluxes cholesterol from cells, particularly astrocytes, into the extracellular space. The recent studies pertaining to ABCA1's role in CNS disorders were included in this study. AREAS COVERED In this comprehensive literature review, preclinical and human studies showed that ABCA1 has a significant role in the following diseases or disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, neuropathy, anxiety, depression, psychosis, epilepsy, stroke, and brain ischemia and trauma. EXPERT OPINION ABCA1 via modulating normal and aberrant brain functions such as apoptosis, phagocytosis, BBB leakage, neuroinflammation, amyloid β efflux, myelination, synaptogenesis, neurite outgrowth, and neurotransmission promotes beneficial effects in aforementioned diseases. ABCA1 is a key molecule in the CNS. By boosting its expression or function, some CNS disorders may be resolved. In preclinical studies, liver X receptor agonists have shown promise in treating CNS disorders via ABCA1 and apoE enhancement.
Collapse
Affiliation(s)
- Tahere Paseban
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zhao J, Wang J, Zhao D, Wang L, Luo X. Association Between ABCA1 R219K Variant and Alzheimer's Disease: An Updated Meta-Analysis and Systematic Review. Curr Alzheimer Res 2023; 19:734-741. [PMID: 36380407 DOI: 10.2174/1567205020666221114112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Over a dozen studies have investigated the effect of the R219K variant in the ATP-binding cassette transporter A1 (ABCA1) gene on the risk of Alzheimer's disease (AD), but the results are conflicting. OBJECTIVE We performed a systematic review and meta-analysis to comprehensively assess the association between the ABCA1 R219K variant and the risk of AD. METHODS Studies included in the meta-analysis were obtained by searching PubMed, Web of Science and AlzGene. Review Manager 5.4 was used for meta-analysis. Both the odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the effect of ABCA1 R219K polymorphism on AD susceptibility. Heterogeneity between the included studies was assessed using I2 statistics and Cochran Qtest. Funnel plots were used to assess publication bias. RESULTS A total of 14 eligible studies involving 10084 subjects were retrieved from PubMed, Web of Science and AlzGene. Meta-analysis results showed that R219K polymorphism was significantly associated with a decreased risk of AD in Chinese under a recessive model (OR = 0.67; 95% CI = 0.51- 0.88; P = 0.004). CONCLUSION The present meta-analysis indicated that the KK genotype of R219K polymorphism may act as a protective factor for AD in the Chinese population. Additional studies with larger sample sizes are needed to further confirm this association.
Collapse
Affiliation(s)
- Jinrong Zhao
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Jinpei Wang
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Dong Zhao
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Lin Wang
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Xiaoe Luo
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| |
Collapse
|
5
|
Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre AL, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17:23. [PMID: 35313950 PMCID: PMC8935795 DOI: 10.1186/s13024-022-00524-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Sally Temple
- Neural Stem Cell Institute, NY, 12144, Rensselaer, USA
| | - Larry I Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, CA, Palo Alto, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, MA, Boston, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, CA, 91125, Pasadena, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Aurora, CO, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | | | | | | | | | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Cacabelos R, Naidoo V, Martínez-Iglesias O, Corzo L, Cacabelos N, Pego R, Carril JC. Pharmacogenomics of Alzheimer's Disease: Novel Strategies for Drug Utilization and Development. Methods Mol Biol 2022; 2547:275-387. [PMID: 36068470 DOI: 10.1007/978-1-0716-2573-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Olaia Martínez-Iglesias
- Department of Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Rocío Pego
- Department of Neuropsychology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Juan C Carril
- Department of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
7
|
Abstract
With the expected rise in Alzheimer's disease and related dementias (ADRD) in the coming decades due to the aging population and a lack of effective disease-modifying treatments, there is a need for preventive strategies that may tap into resilience parameters. A wide array of resilience strategies has been proposed including genetics, socioeconomic status, lifestyle modifications, behavioral changes, and management of comorbid disease. These different strategies can be broadly classified as distinguishing between modifiable and non-modifiable risk factors, some of which can be quantified so that their clinical intervention can be effectively accomplished. A clear shift in research focus from dementia risk to addressing disease resistance and resilience is emerging that has provided new potential therapeutic targets. Here we review and summarize the latest investigations of resilience mechanisms and methods of quantifying resilience for clinical research. These approaches include identifying genetic variants that may help identify novel pathways (e.g., lipid metabolism, cellular trafficking, synaptic function, inflammation) for therapeutic treatments and biomarkers for use in a precision medicine-like regimen. In addition, innovative structural and molecular neuroimaging analyses may assist in detecting and quantifying pathological changes well before the onset of clinical symptoms setting up the possibility of primary and secondary prevention trials. Lastly, we summarize recent studies demonstrating the study of resilience in caregivers of persons living with dementia may have direct and indirect impact on the quality of care and patient outcomes.
Collapse
Affiliation(s)
- Mahesh S. Joshi
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
8
|
Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Marcogliese PC, Johansson JO, Ioannou MS, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes. Proc Natl Acad Sci U S A 2021; 118:e2112095118. [PMID: 34949639 PMCID: PMC8719885 DOI: 10.1073/pnas.2112095118] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Jake G Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | | | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
9
|
Sepiani A, Cheraghzadeh M, Nazeri Z, Azizidoost S, Shalbafan B, Kheirollah A. Correlation of R219K polymorphism of ABCA1 gene and the risk of Alzheimer's disease in the southwest of Iran. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Chasovskikh NY, Chizhik EE, Bobrysheva AA. Bioinformatic Annotation of Genes for Alzheimer’s Disease and Coronary Heart Disease. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542111003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
ATP-binding cassette transporters and neurodegenerative diseases. Essays Biochem 2021; 65:1013-1024. [PMID: 34415015 DOI: 10.1042/ebc20210012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.
Collapse
|
12
|
Russo EB, Spooner C, May L, Leslie R, Whiteley VL. Cannabinoid Hyperemesis Syndrome Survey and Genomic Investigation. Cannabis Cannabinoid Res 2021; 7:336-344. [PMID: 34227878 PMCID: PMC9225400 DOI: 10.1089/can.2021.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabinoid hyperemesis syndrome (CHS) is a diagnosis of exclusion with intractable nausea, cyclic vomiting, abdominal pain, and hot bathing behavior associated with ongoing tetrahydrocannabinol (THC) exposure. Increasing cannabis use may elevate CHS prevalence, exacerbating a public health issue with attendant costs and morbidity. Objective, Design, and Data Source: This study, the largest contemporaneous database, investigated genetic mutations underlying CHS. Patients with CHS diagnosis and ongoing symptoms were compared with current cannabis users lacking symptoms. Target Population: A screening questionnaire was posted online. Of 585 respondents, 205 qualified as the CHS pool and 54 as controls; a reduced pool of 28 patients and 12 controls ultimately completed genomic testing. Results: Patients and controls were high-frequency users of cannabis flower or concentrates (93%), using multiple grams/day of THC-predominant material. Among patients, 15.6% carried diagnoses of cannabis dependency or addiction, and 56.6% experienced withdrawal symptoms. About 87.7% of patients improved after cannabis cessation, most suffering recurrence rapidly after resumption. Findings in patients included mutations in genes COMT {odds ratio, 12 (95% confidence limit [CL], 1.3–88.1) p=0.012}, transient receptor potential vanilloid receptor 1 (TRPV1) (odds ratio, 5.8 [95% CL, 1.2–28.4] p=0.015), CYP2C9 (odds ratio, 7.8 [95% CL, 1.1–70.1] p=0.043), gene coding dopamine-2 receptor (DRD2) (odds ratio, 6.2 [95% CL, 1.1–34.7] p=0.031), and ATP-binding cassette transporter gene (ABCA1) (odds ratio, 8.4 [95% CL, 1.5–48.1] p=0.012). Limitations: Some participants were reluctant to undergo genetic testing; only 28 of 99 CHS patients who agreed to testing ultimately returned a kit. Conclusion: This is the largest patient cohort of CHS examined to date, and first to note associated mutations in genes affecting neurotransmitters, the endocannabinoid system, and the cytochrome P450 complex associated with cannabinoid metabolism. Although the sample size was smaller than desired, these preliminary findings may contribute to the growing body of knowledge, stimulate additional investigation, help elucidate the pathophysiology of CHS, and, ultimately, direct future treatment.
Collapse
Affiliation(s)
| | | | - Len May
- Endocanna Health, Los Angeles, California, USA
| | - Ryan Leslie
- Endocanna Health, Los Angeles, California, USA
| | | |
Collapse
|
13
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
14
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
15
|
Wang H, Ma L, Pan X, Du Z, Chen Y. Novel associations of SNPs MYLIP rs3757354 and ABCA1 2230806 gene with early-onset-preeclampsia: A case-control candidate genetic study. Pregnancy Hypertens 2021; 23:185-190. [PMID: 33450693 DOI: 10.1016/j.preghy.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the association between MYLIP rs3757354 and ABCA1 2230806 single nucleotide polymorphisms in women with preeclampsia in China. STUDY DESIGN The case-control study involved 205 patients with preeclampsia and 145 controls. All women with preeclampsia were divided into two groups: 78 patients with early-onset preeclampsia and 127 with late-onset preeclampsia. MAIN OUTCOME MEASURE MYLIP rs3757354 and ABCA1 rs2230806 SNPs were analyzed through multiplex PCR for targeted next-generation sequencing technology. A secondary outcome was lipid profile changes and liver function in women with PE. RESULTS Maternal age (OR: 1.073, 95% CI = 1.006-1.145), BMI (OR: 1.118, 95% CI = 1.040-1.201), TG/HDL-C (OR: 1.536, 95% CI = 1.080-2.183), and TT genotype of SNP rs3757354 (OR: 3.238, 95% CI = 1.313-7.990) were associated with EOPE risk. Our study found that patients with TT genotype of ABCA1 rs2230806 had more severe hepatic dysfunction and higher HDL levels in the EOPE group compared with CC/CT genotype. There was no association between rs2230806 and the risk of PE. CONCLUSION The polymorphisms of rs3757354 are associated with the risk of EOPE in Chinese pregnant women. The TT genotype in ABCA1 rs2230806 is a strong predictive risk for elevated aminotransferase levels in pregnant women with EOPE.
Collapse
Affiliation(s)
- He Wang
- The First Hospital of Jilin University, Department of Obstetrics, Changchun, Jilin Province 130021, China
| | - Lingyu Ma
- The First Hospital of Jilin University, Department of Obstetrics, Changchun, Jilin Province 130021, China
| | - Xuefeng Pan
- The First Hospital of Jilin University, Department of Obstetrics, Changchun, Jilin Province 130021, China
| | - Zhaoli Du
- Institute of Genetic Technology, Yinfeng Bilogical Group, Yinfeng Gene Technology Company Limited, Jinan, Shandong Province 250014, China
| | - Ying Chen
- The First Hospital of Jilin University, Department of Obstetrics, Changchun, Jilin Province 130021, China.
| |
Collapse
|
16
|
Teresa JC, Fernado C, Nancy MR, Gilberto VA, Alberto CR, Roberto RR. Association of genetic variants of ABCA1 with susceptibility to dementia: (SADEM study). Metab Brain Dis 2020; 35:915-922. [PMID: 32447570 DOI: 10.1007/s11011-020-00577-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Because of the importance of cholesterol metabolism in the physiopathogenesis of dementia, and knowing the function of ATP-binding cassette A1 transporter (ABCA1) as a cholesterol flow pump at the cellular and cerebral level, it has been noted that the ABCA1 gene may be a good candidate for disease study. In order to evaluate the relationship between ABCA1 genetic variants and the risk of Alzheimer's disease and other dementia in Mexican individuals, we examined three ABCA1 polymorphisms located in the exonic region (rs2230808, rs2066718, rs2230806) and two in the promoter region (rs1800977, rs2422493) in a group of 557 normal controls and 221 cases of dementia. It was possible to distinguish one protective haplotype: CCCCGC (OR = 0,502, 95% CI = 0,370-0,681, p < 0.001), and one risk haplotype TCCCAT (OR = 2208, 95% CI = 1609-3031, p < 0.000) for the development of dementia. The results suggest that ABCA1 plays an important role in the pathophysiological mechanisms for the development of dementia.
Collapse
Affiliation(s)
- Juárez-Cedillo Teresa
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento. Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (Actualmente comisionada en la Unidad de Investigación en Epidemiológica Clínica, Hospital General Regional Núm. 1 Dr. Carlos Mac Gregor Sánchez Navarro, Gabriel Mancera 222 esq. Xola. Colonia Del Valle. Delegación. Benito Juárez, IMSS), Mexico City, Mexico.
| | - Calzada Fernado
- Unidad de invetigación Médica en Farmacología UMAE, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Martínez-Rodríguez Nancy
- Community Health Research. Department, Hospital Infantil de Mexico Federico Gomez, Ministry of Health (SSA), Mexico City, Mexico
| | - Vargas-Alarcón Gilberto
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Cruz-Rocha Alberto
- Laboratorio de Urgencias del Hospital de Pediatría. Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Robles-Ramirez Roberto
- Laboratorio de Urgencias del Hospital de Pediatría. Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
17
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
18
|
Fouladseresht H, Khazaee S, Javad Zibaeenezhad M, Hossein Nikoo M, Khosropanah S, Doroudchi M. Association of ABCA1 Haplotypes with Coronary Artery Disease. Lab Med 2019; 51:157-168. [DOI: 10.1093/labmed/lmz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahel Khazaee
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hossein Nikoo
- Cardiovascular Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Cardiovascular Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Stepler KE, Robinson RAS. The Potential of ‘Omics to Link Lipid Metabolism and Genetic and Comorbidity Risk Factors of Alzheimer’s Disease in African Americans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:1-28. [DOI: 10.1007/978-3-030-05542-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|