1
|
Zhang Q, Wu T, Luo C, Xie H, Wang D, Peng J, Wu K, Huang W. Ecotoxicological risk assessment of the novel psychoactive substance Esketamine: Emphasis on fish skeletal, behavioral, and vascular development. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135823. [PMID: 39278034 DOI: 10.1016/j.jhazmat.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Novel psychoactive substances (NPS), such as Esketamine (Esket), often contaminate the aquatic ecosystems following human consumption, raising concerns about the residues and potential ecological hazards to non-target organisms. The study used zebrafish as a model organism to investigate the developmental toxicity and ecotoxicological effects of acute Esket exposure. Our findings demonstrate that exposure to Esket significantly affected the early development and angiogenesis of zebrafish embryos/larvae. The mandible length was significantly decreased, and the angles between the pharyngeal arch cartilages were narrowed compared to the control group (all P < 0.05). Additionally, Esket resulted in a decrease of 47.6-89.8 % in the number of neural crest cells (NCC). Transcriptome analysis indicated altered expression of genes associated with cartilage and osteoblast growth. Moreover, Esket significantly inhibited swimming ability in zebrafish larvae and was accompanied by behavioral abnormalities and molecular alterations in the brain. Potential mechanisms underlying Esket-induced behavioral disorders involve neurotransmitter system impairment, abnormal cartilage development and function, aberrant vascular development, as well as perturbations in oxidative stress and apoptosis signaling pathways. Notably, the dysregulation of skeleton development through the bone morphogenetic protein (BMP) signaling pathway is identified as the primary mechanistic behind Esket-induced behavioral disorder. This study enhances our understanding of Esket's ecotoxicology profile and provides a comprehensive assessment of the environmental risks associated with NPS.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, PR China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
2
|
Huang S, Wang J, Lin T, He C, Chen Z. Esketamine Exposure Impairs Cardiac Development and Function in Zebrafish Larvae. TOXICS 2024; 12:427. [PMID: 38922107 PMCID: PMC11209413 DOI: 10.3390/toxics12060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Esketamine is a widely used intravenous general anesthetic. However, its safety, particularly its effects on the heart, is not fully understood. In this study, we investigated the effects of esketamine exposure on zebrafish embryonic heart development. Zebrafish embryos were exposed to esketamine at concentrations of 1, 10, and 100 mg/L from 48 h post-fertilization (hpf) to 72 hpf. We found that after exposure, zebrafish embryos had an increased hatching rate, decreased heart rate, stroke volume, and cardiac output. When we exposed transgenic zebrafish of the Tg(cmlc2:EGFP) strain to esketamine, we observed ventricular dilation and thickening of atrial walls in developing embryos. Additionally, we further discovered the abnormal expression of genes associated with cardiac development, including nkx2.5, gata4, tbx5, and myh6, calcium signaling pathways, namely ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a3, slc8a4a, and cacna1aa, as well as an increase in acetylcholine concentration. In conclusion, our findings suggest that esketamine may impair zebrafish larvae's cardiac development and function by affecting acetylcholine concentration, resulting in weakened cardiac neural regulation and subsequent effects on cardiac function. The insights garnered from this research advocate for a comprehensive safety assessment of esketamine in clinical applications.
Collapse
Affiliation(s)
- Shuo Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
| | - Jingyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Zhiyuan Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
| |
Collapse
|
3
|
Ölmeztürk Karakurt TC, Emir İ, Bedir Z, Ozkaloglu Erdem KT, Süleyman H, Sarıgül C, Mendil AS. Effects of carvacrol on ketamine-induced cardiac injury in rats: an experimental study. Drug Chem Toxicol 2024; 47:166-171. [PMID: 36511184 DOI: 10.1080/01480545.2022.2155664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
AIM We aimed to investigate the preventive effects of carvacrol against ketamine-induced cardiotoxicity biochemically and histopathologically in an experimental model. MATERIAL AND METHOD The rats were divided into three groups; healthy control (HC), ketamine alone (KG), and ketamine + carvacrol (KCG) groups. Serum Creatine Kinase Myocardial Band (CK-MB) and Troponin I (TP I) levels were determined. Malondialdehyde (MDA), Glutathione (GSH), Superoxide Dismutase (SOD), Tumor Necrosis Factor α (TNF-α), Interleukin 1 beta (IL-1beta), and Interleukin 6 (IL-6) levels were measured in the heart tissues of the rats. Heart tissues were also evaluated histopathologically. RESULTS In the ketamine-treated group, tissue MDA, TNF-α, IL-1beta, and IL-6 levels increased while tissue GSH and SOD levels decreased significantly compared with the control group. However, in the ketamine plus carvacrol applied group, all those alterations were significantly less pronounced, close to the healthy controls. Severe mononuclear cell infiltrations, degenerated myocytes and hemorrhage were determined in the ketamine alone administered group, and these alterations were at a mild level in the carvacrol + ketamine administered group. CONCLUSION Prolonged exposure to ketamine resulted in induced oxidative stress in rat heart tissue; concomitant carvacrol application could counteract the negative effects of ketamine by protecting tissues from lipid peroxidation and decreasing the inflammatory response.
Collapse
Affiliation(s)
- Tülay Ceren Ölmeztürk Karakurt
- Anesthesiology and Reanimation Clinic, Mengücek Gazi Training and Research Hospital, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İzzet Emir
- Department of Cardiovascular Surgery, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Zehra Bedir
- Department of Anesthesiology and Reanimation, Regional Training and Research Hospital, University of Health Sciences, Erzurum, Turkey
| | | | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cengiz Sarıgül
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
5
|
Inorganic arsenic alters the development of dopaminergic neurons but not serotonergic neurons and induces motor neuron development via Sonic hedgehog pathway in zebrafish. Neurosci Lett 2023; 795:137042. [PMID: 36587726 DOI: 10.1016/j.neulet.2022.137042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The mechanism of inorganic arsenic-induced neurotoxicity at the cellular level is not known. In zebrafish, teratological effects of inorganic arsenic have been shown at various concentrations. Here, we used similar concentrations of inorganic arsenic to evaluate the effects on specific neuron types. Exposure of zebrafish embryos at 5 h post fertilization (hpf) to sodium arsenite induced developmental toxicity (reduced body length) in 72 hpf larvae, beginning at a concentration of 300 mg/L concentration. Mortality or overt morphological deformity was detected at 500 mg/L sodium arsenite. While 200 mg/L sodium arsenite induced development of tyrosine hydroxylase-positive (dopaminergic) neurons, there was no significant effect on the development of 5-hydroxytryptamine (serotonergic) neurons. Sodium arsenite reduced acetylcholinesterase activity. In the hb9-GFP transgenic larvae, both 200 and 400 mg/L sodium arsenite produced supernumerary motor neurons in the spinal cord. Inhibition of the Sonic hedgehog (Shh) pathway that is essential for motor neuron development, by Gant61, prevented sodium arsenite-induced supernumerary motor neuron development. Inductively coupled plasma mass spectrometry (ICP-MS) revealed that with 200 mg/L and 400 mg/L sodium arsenite treatment, each larva had an average of 387.8 pg and 847.5 pg arsenic, respectively. The data show for the first time that inorganic arsenic alters the development of dopaminergic and motor neurons in the zebrafish larvae and the latter occurs through the Shh pathway. These results may help understand why arsenic-exposed populations suffer from psychiatric disorders and motor neuron disease and Shh may, potentially, serve as a plasma biomarker of arsenic toxicity.
Collapse
|
6
|
Son JH, Gerenza AK, Bingener GM, Bonkowsky JL. Hypoplasia of dopaminergic neurons by hypoxia-induced neurotoxicity is associated with disrupted swimming development of larval zebrafish. Front Cell Neurosci 2022; 16:963037. [PMID: 36212692 PMCID: PMC9540391 DOI: 10.3389/fncel.2022.963037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic injury to the developing brain increases the risk of permanent behavioral deficits, but the precise mechanisms of hypoxic injury to the developing nervous system are poorly understood. In this study, we characterized the effects of developmental hypoxia (1% pO2 from 24 to 48 h post-fertilization, hpf) on diencephalic dopaminergic (DA) neurons in larval zebrafish and the consequences on the development of swimming behavior. Hypoxia reduced the number of diencephalic DA neurons at 48 hpf. Returning zebrafish larvae to normoxia after the hypoxia (i.e., hypoxia-recovery, HR) induced reactive oxygen species (ROS) accumulation. Real-time qPCR results showed that HR caused upregulation of proapoptotic genes, including p53 and caspase3, suggesting the potential for ROS-induced cell death. With HR, we also found an increase in TUNEL-positive DA neurons, a persistent reduction in the number of diencephalic DA neurons, and disrupted swimming development and behavior. Interestingly, post-hypoxia (HR) with the antioxidant N-acetylcysteine partially restored the number of DA neurons and spontaneous swimming behavior, demonstrating potential recovery from hypoxic injury. The present study provides new insights for understanding the mechanisms responsible for motor disability due to developmental hypoxic injury.
Collapse
Affiliation(s)
- Jong-Hyun Son
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
- *Correspondence: Jong-Hyun Son,
| | - Amanda K. Gerenza
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Gabrielle M. Bingener
- Department of Biology, Neuroscience Program, University of Scranton, Scranton, PA, United States
| | - Joshua L. Bonkowsky
- Department of Pediatrics, School of Medicine, Brain and Spine Center, Primary Children’s Hospital, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Huang W, Wu T, Wu K. Zebrafish (Danio rerio): A potential model to assess developmental toxicity of ketamine. CHEMOSPHERE 2022; 291:133033. [PMID: 34822872 DOI: 10.1016/j.chemosphere.2021.133033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Ketamine is a non-competitive antagonist of NMDA glutamate receptor. It is used as an anesthetic, analgesic, sedative, and anti-depressive agent in clinical practice and also an illegal recreational drug. The increasing use has contributed to the measurable levels of ketamine in both wastewaters and hospital effluents, thereby classified as an emergent contaminant. Lately, the potential toxicity of ketamine has raised serious concerns about its iatrogenic or illicit use during pregnancy, neonatal and childhood stages. However, to assess its long-term toxicity potentially by the use of early life stages in human and rodents is limited. In this regard, the zebrafish has been considered as excellent model organism for biosafety assessments of ketamine due to it boasts an in vivo model with the advantages of an in vitro assay. In this review, we summarize the current understanding of the reported toxicity studies with ketamine in early life stage of zebrafish. The adverse effects of ketamine are known to cause overall developmental and multi-organ toxicity, including cardio-, neuro-, and skeletal toxicity. Furthermore, multiple mechanisms are found to be responsible for perpetrating toxicity of ketamine. The current findings confluence to emphasize the zebrafish embryo as an appealing model system for developmental toxicity testing in higher vertebrates.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, PR China
| |
Collapse
|
8
|
Gu Q, Kanungo J. Effect of ketamine on gene expression in zebrafish embryos. J Appl Toxicol 2021; 41:2083-2089. [PMID: 34002392 DOI: 10.1002/jat.4199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 01/21/2023]
Abstract
Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist. Used as an anesthetic, potential neurotoxic and cardiotoxic effects of ketamine in animal models have been reported. The underlying mechanisms of ketamine-induced toxicity are not clear. The zebrafish is an ideal model for toxicity assays because of its predictive capability in chemical testing, which compares well with that of mammalian models. To gain insight into potential mechanisms of ketamine effects, we performed real-time quantitative polymerase chain reaction-based gene expression array analyses. Gene expression analysis was conducted for multiple genes (a total of 84) related to 10 major signaling pathways including the transforming growth factor β (TGFβ), Wingless and Int-1 (Wnt), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), Janus kinase/signal transducers and activators of transcription (JAK/STAT), p53, Notch, Hedgehog, peroxisome proliferator-activated receptor (PPAR), oxidative stress, and hypoxia pathways. Our results show that ketamine altered the expression of specific genes related to hypoxia, p53, Wnt, Notch, TGFβ, PPAR, and oxidative stress pathways. Thus, we can further focus on these specific pathways to elucidate the mechanisms by which ketamine elicits a toxic response.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
9
|
N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish. Food Chem Toxicol 2020; 144:111559. [PMID: 32640352 DOI: 10.1016/j.fct.2020.111559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
There is a strong association between calcium channel blockers (CCBs) and heart failure. CCB toxicity is very common due to overdose and underlying medical conditions. CCBs also have been shown to affect the nervous system. Recently, we demonstrated that the antioxidant N-acetylcysteine (NAC) prevented ketamine-induced cardiotoxicity, developmental toxicity and neurotoxicity. Functionally, we attributed NAC's beneficial effect to its ability to increase cellular calcium. Here, we hypothesized that if there was an involvement of calcium in NAC's preventative effects on ketamine toxicity, NAC might also ameliorate toxicities induced by verapamil, an L-type CCB used to treat hypertension. Using zebrafish embryos, we show that in the absence of NAC, verapamil (up to 100 μM) dose-dependently reduced heart rate and those effects were prevented by NAC co-treatment. Furthermore, a 2-h treatment with NAC rescued reduction of heart rate induced by pre-treatment of 50 and 100 μM of verapamil for 18 h. Verapamil up to 100 μM and NAC up to 1.5 mM did not have any adverse effects on the expression of tyrosine hydroxylase in the noradrenergic neurons of the arch-associated cluster (AAC) located near the heart. NAC did not change cysteine levels in the embryos suggesting that the beneficial effect of NAC on verapamil toxicity may not involve its antioxidant property. In our search for compounds that can prevent CCB toxicity, this study, for the first time, demonstrates protective effects of NAC against verapamil's adverse effects on the heart.
Collapse
|
10
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Robinson BL, Gu Q, Tryndyak V, Ali SF, Dumas M, Kanungo J. Nifedipine toxicity is exacerbated by acetyl l-carnitine but alleviated by low-dose ketamine in zebrafish in vivo. J Appl Toxicol 2019; 40:257-269. [PMID: 31599005 DOI: 10.1002/jat.3901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
Calcium channel blocker (CCB) poisoning is a common and sometimes life-threatening emergency. Our previous studies have shown that acetyl l-carnitine (ALCAR) prevents cardiotoxicity and developmental toxicity induced by verapamil, a CCB used to treat patients with hypertension. Here, we tested whether toxicities of nifedipine, a dihydropyridine CCB used to treat hypertension, can also be mitigated by co-treatment with ALCAR. In the zebrafish embryos at three different developmental stages, nifedipine induced developmental toxicity with pericardial sac edema in a dose-dependent manner, which were surprisingly exacerbated with ALCAR co-treatment. Even with low-dose nifedipine (5 μm), when the pericardial sac looked normal, ALCAR co-treatment showed pericardial sac edema. We hypothesized that toxicity by nifedipine, a vasodilator, may be prevented by ketamine, a known vasoconstrictor. Nifedipine toxicity in the embryos was effectively prevented by co-treatment with low (subanesthetic) doses (25-100 μm added to the water) of ketamine, although a high dose of ketamine (2 mm added to the water) partially prevented the toxicity.As expected of a CCB, nifedipine either in the presence or absence of ketamine-reduced metabolic reactive oxygen species (ROS), a downstream product of calcium signaling, in the rapidly developing digestive system. However, nifedipine induced ROS in the trunk region that showed significantly stunted growth indicating that the tissues under stress potentially produced pathologic ROS. To the best of our knowledge, these studies for the first time show that nifedipine and the dietary supplement ALCAR together induce adverse effects while providing evidence on the therapeutic efficacy of subanesthetic doses of ketamine against nifedipine toxicity in vivo.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Qiang Gu
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Syed F Ali
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | | | - Jyotshna Kanungo
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
12
|
Félix L, Coimbra AM, Valentim AM, Antunes L. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol 2019; 49:357-370. [PMID: 31314655 DOI: 10.1080/10408444.2019.1617236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the years, the potential toxicity of anesthetics has raised serious concerns about its safe use during pregnancy. As evidence emerged from research in animal models, showing that some anesthetic drugs are potential teratogenic, the determination of the risk of exposures to anesthetic drugs at early life stages became mandatory. However, due to inaccessibility and ethical constrains related to experimental conditions, the use of early life stages in mammalian models is limited. In this regard, some animal and nonanimal models have been suggested to surpass mammalian use in experimentation. Among them, the zebrafish embryo test has been recognized as a promising alternative in toxicology research, as well as an inexpensive and practical test. Substantial information collected from developmental research following compounds exposure, has contributed to the application of zebrafish assays in research, although only a few studies have focused on the use of early life stages of zebrafish to evaluate the developmental effects of anesthetics. Based on the recent advances of science and technology, there is a clear potential for zebrafish early life stages to provide new insights into anesthetics teratogenicity. This review provides an overview of recent anesthesia research using zebrafish embryos, demonstrating its usefulness to the anesthesia field, discussing the recent findings on various aspects related to the effects of anesthetics during early life development and the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Luís Félix
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Valentim
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Luís Antunes
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| |
Collapse
|
13
|
Nouri A, Heidarian E. Ameliorative effects of N-acetyl cysteine on diclofenac-induced renal injury in male rats based on serum biochemical parameters, oxidative biomarkers, and histopathological study. J Food Biochem 2019; 43:e12950. [PMID: 31368551 DOI: 10.1111/jfbc.12950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
Diclofenac (DIC) can cause nephrotoxicity in humans. In this study, we evaluated the protective effects of N-acetyl cysteine (NAC) on DIC-induced nephrotoxicity. Rats were assigned to four groups. Group 1 was control group; group 2 administrated with DIC only; group 3 administrated with DIC plus NAC and group 4 was treated with DIC and silymarin. Then, the oxidative biomarkers in serum and kidney were evaluated. In group 2, DIC caused a remarkable elevation (p < 0.05) in the levels of serum uric acid, TNF-α, creatinine, urea, GOT, and GPT, protein carbonyl, malondialdehyde (MDA), and renal TNF-α gene expression, relative to control group. In treated groups with NAC and silymarin, a noticeable reduction (p < 0.05) was seen in mentioned levels of biochemical parameters. NAC showed that it could reduce the abnormality of biochemical parameters and histopathological changes which is induced by DIC. PRACTICAL APPLICATIONS: N-acetyl cysteine (NAC) has a potential to ameliorate renal histopathological changes and improving renal activity of antioxidant enzymes in nephrotoxicity by diclofenac. Also, NAC has a potential to reduce inflammatory gene expression in the diclofenac-induced nephrotoxicity. Additionally, NAC can be considered as an antioxidant which reduces renal MDA and serum protein carbonyl due to nephrotoxicity by diclofenac.
Collapse
Affiliation(s)
- Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Robinson B, Gu Q, Ali SF, Dumas M, Kanungo J. Ketamine-induced attenuation of reactive oxygen species in zebrafish is prevented by acetyl l-carnitine in vivo. Neurosci Lett 2019; 706:36-42. [PMID: 31078678 DOI: 10.1016/j.neulet.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Ketamine, an anesthetic, is a non-competitive antagonist of the calcium-permeable N-methyl-d-aspartate (NMDA) receptor. High concentrations of ketamine have been implicated in cardiotoxicity and neurotoxicity. Often, these toxicities are thought to be mediated by reactive oxygen species (ROS). However, findings to the contrary showing ketamine reducing ROS in mammalian cells and neurons in vitro, are emerging. Here, we determined the effects of ketamine on ROS levels in zebrafish larvae in vivo. Based on our earlier studies demonstrating reduction in ATP levels by ketamine, we hypothesized that as a calcium antagonist, ketamine would also prevent ROS generation, which is a by-product of ATP synthesis. To confirm that the detected ROS in a whole organism, such as the zebrafish larva, is specific, we used diphenyleneiodonium (DPI) that blocks ROS production by inhibiting the NADPH Oxidases (NOX). Upon 20 h exposure, DPI (5 and 10 μM) and ketamine at (1 and 2 mM) reduced ROS in the zebrafish larvae in vivo. Using acetyl l-carnitine (ALCAR), a dietary supplement, that induces mitochondrial ATP synthesis, we show elevated ROS generation with increasing ALCAR concentrations. Combined, ketamine and ALCAR counter-balanced ROS generation in the larvae suggesting that ketamine and ALCAR have opposing effects on mitochondrial metabolism, which may be key to maintaining ROS homeostasis in the larvae and affords ALCAR the ability to prevent ketamine toxicity. These results for the first time show ketamine's antioxidative and ALCAR's prooxidative effects in a live vertebrate.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- The Bionetics Corporation, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|