1
|
McCabe SM, Abbiss CR, Libert JP, Bach V. Functional links between thermoregulation and sleep in children with neurodevelopmental and chronic health conditions. Front Psychiatry 2022; 13:866951. [PMID: 36451768 PMCID: PMC9703054 DOI: 10.3389/fpsyt.2022.866951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bi-directional relationship between sleep and wake is recognized as important for all children. It is particularly consequential for children who have neurodevelopmental disorders (NDDs) or health conditions which challenge their sleep and biological rhythms, and their ability to maintain rhythms of participation in everyday activities. There are many studies which report the diverse reasons for disruption to sleep in these populations. Predominantly, there is focus on respiratory, pharmaceutical, and behavioral approaches to management. There is, however, little exploration and explanation of the important effects of body thermoregulation on children's sleep-wake patterns, and associated behaviors. Circadian patterns of sleep-wake are dependent on patterns of body temperature change, large enough to induce sleep preparedness but remaining within a range to avoid sleep disturbances when active thermoregulatory responses against heat or cold are elicited (to maintain thermoneutrality). Additionally, the subjective notion of thermal comfort (which coincides with the objective concept of thermoneutrality) is of interest as part of general comfort and associated behavioral responses for sleep onset and maintenance. Children's thermoregulation and thermal comfort are affected by diverse biological functions, as well as their participation in everyday activities, within their everyday environments. Hence, the aforementioned populations are additionally vulnerable to disruption of their thermoregulatory system and their capacity for balance of sleep and wakefulness. The purpose of this paper is to present hitherto overlooked information, for consideration by researchers and clinicians toward determining assessment and intervention approaches to support children's thermoregulation functions and promote their subjective thermal comfort, for improved regulation of their sleep and wake functions.
Collapse
Affiliation(s)
- Susan M McCabe
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Chris R Abbiss
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Véronique Bach
- PeriTox UMR_I 01, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
3
|
Allen J, Zareen Z, Doyle S, Whitla L, Afzal Z, Stack M, Franklin O, Green A, James A, Leahy TR, Quinn S, Elnazir B, Russell J, Paran S, Kiely P, Roche EF, McDonnell C, Baker L, Hensey O, Gibson L, Kelly S, McDonald D, Molloy EJ. Multi-Organ Dysfunction in Cerebral Palsy. Front Pediatr 2021; 9:668544. [PMID: 34434904 PMCID: PMC8382237 DOI: 10.3389/fped.2021.668544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cerebral Palsy (CP) describes a heterogenous group of non-progressive disorders of posture or movement, causing activity limitation, due to a lesion in the developing brain. CP is an umbrella term for a heterogenous condition and is, therefore, descriptive rather than a diagnosis. Each case requires detailed consideration of etiology. Our understanding of the underlying cause of CP has developed significantly, with areas such as inflammation, epigenetics and genetic susceptibility to subsequent insults providing new insights. Alongside this, there has been increasing recognition of the multi-organ dysfunction (MOD) associated with CP, in particular in children with higher levels of motor impairment. Therefore, CP should not be seen as an unchanging disorder caused by a solitary insult but rather, as a condition which evolves over time. Assessment of multi-organ function may help to prevent complications in later childhood or adulthood. It may also contribute to an improved understanding of the etiology and thus may have an implication in prevention, interventional methods and therapies. MOD in CP has not yet been quantified and a scoring system may prove useful in allowing advanced clinical planning and follow-up of children with CP. Additionally, several biomarkers hold promise in assisting with long-term monitoring. Clinicians should be aware of the multi-system complications that are associated with CP and which may present significant diagnostic challenges given that many children with CP communicate non-verbally. A step-wise, logical, multi-system approach is required to ensure that the best care is provided to these children. This review summarizes multi-organ dysfunction in children with CP whilst highlighting emerging research and gaps in our knowledge. We identify some potential organ-specific biomarkers which may prove useful in developing guidelines for follow-up and management of these children throughout their lifespan.
Collapse
Affiliation(s)
- John Allen
- Discipline of Pediatrics, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre, Trinity College Dublin, Dublin, Ireland
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | | | - Samantha Doyle
- Department of Clinical Genetics, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Laura Whitla
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Zainab Afzal
- Discipline of Pediatrics, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Maria Stack
- Children's Health Ireland at Crumlin, Dublin, Ireland
- Children's Health Ireland at Temple St. Dublin, Dublin, Ireland
| | - Orla Franklin
- Children's Health Ireland at Crumlin, Dublin, Ireland
- Children's Health Ireland at Temple St. Dublin, Dublin, Ireland
| | - Andrew Green
- Children's Health Ireland at Crumlin, Dublin, Ireland
- Children's Health Ireland at Temple St. Dublin, Dublin, Ireland
| | - Adam James
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Timothy Ronan Leahy
- Discipline of Pediatrics, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shoana Quinn
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Basil Elnazir
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - John Russell
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sri Paran
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Patrick Kiely
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Edna Frances Roche
- Discipline of Pediatrics, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre, Trinity College Dublin, Dublin, Ireland
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Ciara McDonnell
- Discipline of Pediatrics, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre, Trinity College Dublin, Dublin, Ireland
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
- Children's Health Ireland at Temple St. Dublin, Dublin, Ireland
| | - Louise Baker
- Children's Health Ireland at Temple St. Dublin, Dublin, Ireland
| | | | - Louise Gibson
- Department of Paediatrics, Cork University Hospital, Cork, Ireland
| | - Stephanie Kelly
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Denise McDonald
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Pediatrics, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre, Trinity College Dublin, Dublin, Ireland
- Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
- Children's Health Ireland at Crumlin, Dublin, Ireland
- Department of Neonatology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Sleep, cognition and executive functioning in young children with cerebral palsy. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:285-314. [PMID: 33641797 DOI: 10.1016/bs.acdb.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Children with cerebral palsy (CP) are at higher risk for sleep disturbances than their typically developing peers. In typically developing young children, lack of sufficient sleep results in deficits in cognition, behavior and executive functioning. Unfortunately, research on sleep in infancy rarely focuses on children with neurodevelopmental disabilities. Studies of older children with CP demonstrate that roughly half of children with CP have a sleep disorder, though screening for sleep disorders in children with CP is not routinely performed. Given the high prevalence of sleep abnormalities in older children with CP and the resulting adverse effects on functioning, understanding sleep derangements and how they affect cognition and executive functioning in these children at earlier ages is critical. In this chapter, we present the state of the evidence for sleep characteristics, cognition and executive functions for infants and toddlers 0-3years old with CP.
Collapse
|
5
|
Baltzan M, Yao C, Rizzo D, Postuma R. Dream enactment behavior: review for the clinician. J Clin Sleep Med 2020; 16:1949-1969. [PMID: 32741444 PMCID: PMC8034224 DOI: 10.5664/jcsm.8734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
NONE Dream enactment behavior commonly occurs on occasion in normal children and adults. Disruptive and frequent dream enactment behavior may come to the attention of the clinician either as the primary reason for consultation or as a prominent characteristic of a patient with other sleep disorders. Questioning patients with chronic neurologic and psychiatric disorders may also reveal previously unrecognized behavior. In the absence of sleep pathology, process of dream enactment likely begins with active, often emotionally charged dream content that may occasionally break through the normal REM sleep motor suppressive activity. Disrupted sleep resulting from many possible causes, such as circadian disruption, sleep apnea, or medications, may also disrupt at least temporarily the motor-suppressive activity in REM sleep, allowing dream enactment to occur. Finally, pathological neurological damage in the context of degenerative, autoimmune, and infectious neurological disorders may lead to chronic recurrent and severe dream enactment behavior. Evaluating the context, frequency, and severity of dream enactment behavior is guided first and foremost by a structured approach to the sleep history. Physical exam and selected testing support the clinical diagnosis. Understanding the context and the likely cause is essential to effective therapy.
Collapse
Affiliation(s)
- Marc Baltzan
- Faculty of Medicine, Department of Epidemiology Biostatistics and Occupational Health, McGill University, Montréal, Canada
- Centre Intégré Universitaire des Soins et Services Sociaux du Nord de L’île de Montréal, Montréal, Canada
- Mount Sinai Hospital, Centre Intégré Universitaire des Soins et Services Sociaux du Centre-ouest de L’île de Montréal, Montréal, Canada
- Institut de Médecine du Sommeil, Montréal, Canada
| | - Chun Yao
- Integrated Program in Neuroscience, McGill University, Montréal, Canada
- Research Institute of McGill University Health Centre, Montréal, Canada
| | - Dorrie Rizzo
- Faculty of Medicine, Department of Family Medicine, McGill University, Montréal, Canada
- Lady Davis Institute for Medical Research, Centre Intégré Universitaire des Soins et Services Sociaux de l’ouest de l’île, Montréal, Canada
| | - Ron Postuma
- Research Institute of McGill University Health Centre, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
6
|
Pinato L, Galina Spilla CS, Markus RP, da Silveira Cruz-Machado S. Dysregulation of Circadian Rhythms in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4379-4393. [DOI: 10.2174/1381612825666191102170450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Background:
The alterations in neurological and neuroendocrine functions observed in the autism
spectrum disorder (ASD) involves environmentally dependent dysregulation of neurodevelopment, in interaction
with multiple coding gene defects. Disturbed sleep-wake patterns, as well as abnormal melatonin and glucocorticoid
secretion, show the relevance of an underlying impairment of the circadian timing system to the behavioral
phenotype of ASD. Thus, understanding the mechanisms involved in the circadian dysregulation in ASD could
help to identify early biomarkers to improve the diagnosis and therapeutics as well as providing a significant
impact on the lifelong prognosis.
Objective:
In this review, we discuss the organization of the circadian timing system and explore the connection
between neuroanatomic, molecular, and neuroendocrine responses of ASD and its clinical manifestations. Here
we propose interconnections between circadian dysregulation, inflammatory baseline and behavioral changes in
ASD. Taking into account, the high relevancy of melatonin in orchestrating both circadian timing and the maintenance
of physiological immune quiescence, we raise the hypothesis that melatonin or analogs should be considered
as a pharmacological approach to suppress inflammation and circadian misalignment in ASD patients.
Strategy:
This review provides a comprehensive update on the state-of-art of studies related to inflammatory
states and ASD with a special focus on the relationship with melatonin and clock genes. The hypothesis raised
above was analyzed according to the published data.
Conclusion:
Current evidence supports the existence of associations between ASD to circadian dysregulation,
behavior problems, increased inflammatory levels of cytokines, sleep disorders, as well as reduced circadian
neuroendocrine responses. Indeed, major effects may be related to a low melatonin rhythm. We propose that
maintaining the proper rhythm of the circadian timing system may be helpful to improve the health and to cope
with several behavioral changes observed in ASD subjects.
Collapse
Affiliation(s)
- Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Caio Sergio Galina Spilla
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Regina Pekelmann Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| |
Collapse
|