1
|
Wang C, Zhang Q, Zhang L, Zhao D, Xu Y, Liu Z, Wu C, Wu S, Yong M, Wu L. Comparative efficacy of different repetitive transcranial magnetic stimulation protocols for lower extremity motor function in stroke patients: a network meta-analysis. Front Neurosci 2024; 18:1352212. [PMID: 38426021 PMCID: PMC10902063 DOI: 10.3389/fnins.2024.1352212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Background Lower extremity motor dysfunction is one of the most severe consequences after stroke, restricting functional mobility and impairing daily activities. Growing evidence suggests that repetitive transcranial magnetic stimulation (rTMS) can improve stroke patients' lower extremity motor function. However, there is still controversy about the optimal rTMS protocol. Therefore, we compared and analyzed the effects of different rTMS protocols on lower extremity motor function in stroke patients using network meta-analysis (NMA). Methods We systematically searched CNKI, WanFang, VIP, CBM, PubMed, Embase, Web of Science, and Cochrane Library databases (from origin to 31 December 2023). Randomized controlled trials (RCTs) or crossover RCTs on rTMS improving lower extremity motor function in stroke patients were included. Two authors independently completed article screening, data extraction, and quality assessment. RevMan (version 5.4) and Stata (version 17.0) were used to analyze the data. Results A total of 38 studies with 2,022 patients were eligible for the NMA. The interventions included HFrTMS-M1, LFrTMS-M1, iTBS-Cerebellum, iTBS-M1, dTMS-M1, and Placebo. The results of NMA showed that LFrTMS-M1 ranked first in FMA-LE and speed, and HFrTMS-M1 ranked first in BBS, TUGT, and MEP amplitude. The subgroup analysis of FMA-LE showed that HFrTMS-M1 was the best stimulation protocol for post-stroke time > 1 month, and LFrTMS-M1 was the best stimulation protocol for post-stroke time ≤ 1 month. Conclusion Considering the impact of the stroke phase on the lower extremity motor function, the current research evidence shows that HFrTMS-M1 may be the preferred stimulation protocol to improve the lower extremity motor function of patients for post-stroke time > 1 month, and LFrTMS-M1 for post-stroke time ≤ 1 month. However, the above conclusion needs further analysis and validation by more high-quality RCTs.Systematic Review Registration:www.crd.york.ac.uk/prospero/, identifier (CRD42023474215).
Collapse
Affiliation(s)
- Chengshuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Qin Zhang
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | | | - Yanan Xu
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Zejian Liu
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunli Wu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Shengzhu Wu
- Department of Rehabilitation Medicine, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Mingjin Yong
- Department of Rehabilitation, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
2
|
Fu Y, Xu C, Fan H, Yang X, Ou J, Yao L, Wang W. Traumatic brain injury and rTMS-ERPs: Case report and literature review. Open Life Sci 2023; 18:20220677. [PMID: 37724119 PMCID: PMC10505337 DOI: 10.1515/biol-2022-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 09/20/2023] Open
Abstract
Currently, there are no cases of targeted, individualized repeated transcranial magnetic stimulation (rTMS) treatment based on event-related potential (ERPs) results showing the activation of functional brain regions. The identification and treatment of mild cognitive impairment after traumatic brain injury are challenging. rTMS has shown unique advantages in previous studies, with positive effects on noninvasive modulation and neuroplasticity after brain injury. The selection of the rTMS parameters and targets remains controversial. ERPs indicate the cortical activity involved in cognitive processing in patients. Therefore, this study proposes that ERPs can be used as biomarkers of cognitive recovery. The results of this study will guide the development of rTMS protocols for patient treatment. To help clinicians better apply rTMS and ERPs in combination, we conducted a relevant literature review and discussion, detailing the therapeutic mechanisms of the combination of ERPs and rTMS. This will facilitate the precise assessment and personalized treatment of such patients, improve the abnormal processing patterns of patients, and promote their return to life and society.
Collapse
Affiliation(s)
- Yutong Fu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Chunyan Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong Fan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xue Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jibing Ou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wenli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
3
|
Huang W, Chen Q, Liu J, Liu L, Tang J, Zou M, Zeng T, Li H, Jiang Q, Jiang Q. Transcranial Magnetic Stimulation in Disorders of Consciousness: An Update and Perspectives. Aging Dis 2022:AD.2022.1114. [PMID: 37163434 PMCID: PMC10389824 DOI: 10.14336/ad.2022.1114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 05/12/2023] Open
Abstract
Disorders of consciousness (DOC) is a state in which consciousness is affected by brain injuries, leading to dysfunction in vigilance, awareness, and behavior. DOC encompasses coma, vegetative state, and minimally conscious state based on neurobehavioral function. Currently, DOC is one of the most common neurological disorders with a rapidly increasing incidence worldwide. Therefore, DOC not only impacts the lives of individuals and their families but is also becoming a serious public health threat. Repetitive transcranial magnetic stimulation (rTMS) can stimulate electrical activity using a pulsed magnetic field in the brain, with great value in the treatment of chronic pain, neurological diseases, and mental illnesses. However, the clinical application of rTMS in patients with DOC is debatable. Herein, we report the recent main findings of the clinical therapeutics of rTMS for DOC, including its efficacy and possible mechanisms. In addition, we discuss the potential key parameters (timing, location, frequency, strength, and secession of rTMS applications) that affect the therapeutic efficiency of rTMS in patients with DOC. This review may help develop clinical guidelines for the therapeutic application of rTMS in DOC.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Mingang Zou
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Tianxiang Zeng
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Huichen Li
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Qing Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - QiuHua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| |
Collapse
|
4
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
5
|
Liu S, Wang X, Ma J, Wang K, Wang Z, Li J, Chen J, Zhan H, Wu W. Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Executive Function and Its Neural Mechanism: An Event-Related Potential Study. Front Neurosci 2021; 15:701560. [PMID: 34776839 PMCID: PMC8580383 DOI: 10.3389/fnins.2021.701560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Executive function refers to the conscious control of thinking and behavior in psychological process. Executive dysfunction widely exists in a variety of neuropsychiatric diseases, and is closely related to the decline of daily living ability and function. This study intends to explore the effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) on executive function and its neural mechanism by using event-related potential (ERP), so as to provide basis for further study on the relationship between cerebral cortex and executive function. Methods: Task switching paradigm was used to study the cognitive flexibility in executive function. Thirty-one healthy subjects were randomly assigned to receive rTMS stimulations (1 Hz rTMS or sham rTMS) to the left dorsolateral prefrontal cortex (DLPFC) twice. The switching task and the electroencephalography EEG recordings were performed before (pre-rTMS/pre-sham rTMS) and immediately after the end of the rTMS application (post-rTMS/post-sham rTMS). Results: The analysis of RTs showed that the main effects of switching and time were statistically significant. Further analysis revealed that the RT of rTMS stimulation was longer than sham rTMS at post-stimulation. ERP analysis showed that there was a significant switching effect in frontal and central scalp location, and the P2 amplitude in switch trials was greater than that in non-switch trials. At post-stimulation, the N2 amplitude of rTMS is more negative than that of sham rTMS at non-switch trials, whereas no such difference was found at switch trials. The P3 amplitude and LPC amplitude are significantly reduced by rTMS at post-stimulation. Conclusion: Low-frequency rTMS of the left DLPFC can cause decline of cognitive flexibility in executive function, resulting in the change of N2 amplitude and the decrease of P3 and LPC components during task switching, which is of positive significance for the evaluation and treatment of executive function.
Collapse
Affiliation(s)
- Sishi Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Rehabilitation Medical School, Southern Medical University, Guangzhou, China
| | - Xianglong Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Rehabilitation Medical School, Southern Medical University, Guangzhou, China
| | - Junqin Ma
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kangling Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengtao Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Li
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Rehabilitation Medical School, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Fan H, Song Y, Cen X, Yu P, Bíró I, Gu Y. The Effect of Repetitive Transcranial Magnetic Stimulation on Lower-Limb Motor Ability in Stroke Patients: A Systematic Review. Front Hum Neurosci 2021; 15:620573. [PMID: 34539362 PMCID: PMC8442991 DOI: 10.3389/fnhum.2021.620573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is fundamental in inducing neuroplastic changes and promoting brain function restoration. Nevertheless, evidence based on the systematic assessment of the implication of rTMS in stroke patients is inadequate. This study aimed to evaluate the value of rTMS in the treatment of lower-limb motor dysfunction in stroke patients via gait characteristics. The electronic literature search was performed in ScienceDirect, Google Scholar, and PubMed databases using "repetitive transcranial magnetic stimulation," "gait," and "stroke" between 2000 and 2020. By screening all the identified studies, a total of 10 studies covering 257 stroke patients were included by matching the inclusion criteria, involving both rTMS with high (≥5 Hz) and low frequency (<5 Hz). Despite the limited study number and relatively high risk of bias, the results of this review primarily confirmed the enhancing effects of rTMS on the lower-limb motor ability (e.g., gait and balance) of stroke patients. In addition, 15- to 20-min course of rTMS for 2 to 3 weeks was found to be the most common setting, and 1 Hz and 10 Hz were the most commonly used low and high frequencies, respectively. These results might have significant clinical applications for patients with weakened lower-limb mobility after a stroke. Nevertheless, more rigorous studies in this field are much warranted. Systematic Review Registration:https://inplasy.com/, identifier INPLASY202180079.
Collapse
Affiliation(s)
- Huiliu Fan
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School of Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Xuanzhen Cen
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School of Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Peimin Yu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - István Bíró
- Doctoral School of Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Nathou C, Etard O, Dollfus S. Auditory verbal hallucinations in schizophrenia: current perspectives in brain stimulation treatments. Neuropsychiatr Dis Treat 2019; 15:2105-2117. [PMID: 31413576 PMCID: PMC6662171 DOI: 10.2147/ndt.s168801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This review reports the current perspectives of brain stimulation techniques in the treatment of auditory verbal hallucinations (AVH) in schizophrenia. METHODS A systematic search of the literature in the PubMed database revealed that the most studied techniques are noninvasive techniques (NIBS), including electroconvulsive therapy (ECT), transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS). RESULTS The results showed that ECT could have great clinical efficacy but is currently underused in practice perhaps due to the costs associated with its limited implementation and potential associated risks. tDCS is still poorly studied and does not demonstrate sufficiently homogeneous or conclusive results yet to prove its efficacy in the treatment of AVH. However, its safe and simple implementation allows us to recommend it to patients who are refractory to other stimulation techniques. Finally, rTMS seems to be the most efficacious NIBS to offer patients with persistent AVH as an add-on therapeutic strategy. Its implementation has a non negligible cost but can be performed by a single practitioner. Great evolution in these techniques with technological progress, robotics and computer science are currently being tested and will undoubtedly improve the clinical efficacy of these procedures, particularly towards more personalized treatments such as individual rTMS targets and intensities. There are also new techniques for deep brain stimulation based on focused ultrasound that could provide much insight into the treatment of AVH in schizophrenia. CONCLUSION This review suggests that add-on brain stimulation treatments could play a key role among the therapeutic strategies for auditory hallucinations reduction in schizophrenia.
Collapse
Affiliation(s)
- Clément Nathou
- Normandie Univ, UNICAEN, CHU de Caen, Service de Psychiatrie Adulte , Caen, F-14000, France.,Normandie Univ, UNICAEN, ISTS, EA 7466 , GIP Cyceron, Caen 14000, France
| | - Olivier Etard
- Normandie Univ, UNICAEN, ISTS, EA 7466 , GIP Cyceron, Caen 14000, France.,Normandie Univ, UNICAEN, CHU de Caen, Service des Explorations Fonctionnelles du Système Nerveux, CHU de Caen, Caen, F-14000, France
| | - Sonia Dollfus
- Normandie Univ, UNICAEN, CHU de Caen, Service de Psychiatrie Adulte , Caen, F-14000, France.,Normandie Univ, UNICAEN, ISTS, EA 7466 , GIP Cyceron, Caen 14000, France
| |
Collapse
|