1
|
Wang X, Cheng B, Roberts N, Wang S, Luo Y, Tian F, Yue S. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Hum Brain Mapp 2021; 42:5458-5476. [PMID: 34431584 PMCID: PMC8519858 DOI: 10.1002/hbm.25618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Working memory (WM) impairments are common features of psychiatric disorders. A systematic meta-analysis was performed to determine common and disorder-specific brain fMRI response during performance of WM tasks in patients with SZ and patients with MDD relative to healthy controls (HC). Thirty-four published fMRI studies of WM in patients with SZ and 18 published fMRI studies of WM in patients with MDD, including relevant HC, were included in the meta-analysis. In both SZ and MDD there was common stronger fMRI response in right medial prefrontal cortex (MPFC) and bilateral anterior cingulate cortex (ACC), which are part of the default mode network (DMN). The effects were of greater magnitude in SZ than MDD, especially in prefrontal-temporal-cingulate-striatal-cerebellar regions. In addition, a disorder-specific weaker fMRI response was observed in right middle frontal gyrus (MFG) in MDD, relative to HC. For both SZ and MDD a significant correlation was observed between the severity of clinical symptoms and lateralized fMRI response relative to HC. These findings indicate that there may be common and distinct anomalies in brain function underlying deficits in WM in SZ and MDD, which may serve as a potential functional neuroimaging-based diagnostic biomarker with value in supporting clinical diagnosis, measuring illness severity and assessing the efficacy of treatments for SZ and MDD at the brain level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- Edinburgh Imaging Facility, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Suping Yue
- Department of Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
2
|
Abnormalities of effective connectivity and white matter microstructure in the triple network in patients with schizophrenia. Psychiatry Res 2020; 290:113019. [PMID: 32474067 DOI: 10.1016/j.psychres.2020.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022]
Abstract
Disorganized communication among large-scale brain networks, especially in the salience network, default mode network and central executive network, have been consistently reported in schizophrenia (SZ) patients. However, abnormal patterns of the effective connectivity and abnormalities in the white matter of these networks remains unclear in patients with SZ. Fifty-six SZ patients and fifty-five healthy controls were enrolled in the present study and underwent resting state functional magnetic resonance and diffusion tensor imaging. Twelve main nodes within the triple networks were defined by independent components analysis. Effective connectivity between these main nodes was computed using Granger causality analysis. Voxel-based analysis of the diffusion tensor imaging data was conducted to explore white matter changes. The SZ patients showed abnormal effective connectivity between the anterior cingulate cortex and the dorsolateral prefrontal cortex. The abnormal white matter showed decreased fractional anisotropy localized in the bilateral anterior corona radiate and left superior long fasciculus in patients with SZ. These findings shed light on the importance of the triple network in the pathogenesis of SZ, which may facilitate the understanding of SZ.
Collapse
|
3
|
Kang Y, Zhang W, Lv Y, Cai S, Xu H, Wang J, Huang L. Effects of the 5-HT2A and DRD3 genotypes on cortical morphology and functional connectivity density in drug-naïve first episode schizophrenia. Schizophr Res 2020; 216:213-221. [PMID: 31813806 DOI: 10.1016/j.schres.2019.11.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023]
Abstract
The 5-hydroxytryptamine 2A receptor (5-HT2A) and dopamine D3 receptor (DRD3) have been extensively studied as promising candidate genes for schizophrenia. Magnetic resonance imaging studies have demonstrated that schizophrenia is associated with widespread structural and functional abnormalities in the brain. Serotonin and dopamine receptors play crucial roles in the development of the human cerebral cortex and brain activity. However, how the 5-HT2A and DRD3 genes impact brain structure and function in schizophrenia remains unknown. In the present study, we investigated the main effect of disease state and the interaction effect between disease state and genotype of these two genes on cortical volume, thickness, surface area and functional connectivity density (FCD) in fifty-five drug-naïve first episode schizophrenia patients and fifty-three healthy controls. We found that the differences in local FCD (lFCD) and global FCD (gFCD) between patients and healthy controls were predominantly located in brain hub regions. The significant interaction effects of disease state and 5-HT2A and DRD3 genes on brain structure and function were mainly located in the temporal cortex. Our findings may help to improve the understanding of the relationship between 5-HT2A and DRD3 genotypes and schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Hanxiao Xu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai 200030, PR China.
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
4
|
Kumar P, Rai V. Catechol-O-methyltransferase gene Val158Met polymorphism and obsessive compulsive disorder susceptibility: a meta-analysis. Metab Brain Dis 2020; 35:241-251. [PMID: 31879835 DOI: 10.1007/s11011-019-00495-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a common psychiatric disorder that affects approximately 1-3% of the general population. It is characterized by disabling obsessions (intrusive unwanted thoughts) and/or compulsions (ritualized repetitive behaviors). Catechol-O-methyltransferase (COMT) enzyme has an important role in inactivation of dopamine and higher dopamine levels may be implicated in OCD, hence COMT gene is a suitable candidate for OCD. Several case-control studies have evaluated the role of COMT Val 158Met (rs4680;472G- > A) polymorphism as a risk factor for OCD but the results remained inconclusive, hence present meta-analysis was designed to find out correct assessment. All studies that investigated the association of COMT gene Val158Met polymorphism with OCD risk, were considered in the present meta-analysis. Statistical analysis was performed with the software program MetaAnalyst. In the current meta-analysis, 14 case-control studies with 1435 OCD cases and 2753 healthy controls were included. The results indicated significant association between COMT Val158Met polymorphism and OCD risk using allele contrast, homozygote and dominant models (ORA vs G = 1.14; 95% CI = 1.02-1.27; p = 0.01; ORAAvs.GG = 1.33; 95% CI = 1.09-1.62, p = 0.004; ORAA + AGvs.GG = 1.14; 95% CI = 1.0-1.32; p = 0.04). In subgroup analysis based on case gender, meta-analysis of male cases showed significant association using all five genetic models (ORAAvsGG = 1.99; 95%CI = 1.42-2.59; p = <0.001; ORAA + AGvs.GG = 1.59; 95% CI = 1.20-2.10; p = 0.001), but did not show any association between COMT Val 158Met polymorphism and OCD risk in females. In conclusion, results of present meta-analysis supports that the COMT Val158Met polymorphism is a risk factor for OCD especially for males.
Collapse
Affiliation(s)
- Pradeep Kumar
- VBS Purvanchal University, Jaunpur, Jaunpur, UP, India
| | - Vandana Rai
- VBS Purvanchal University, Jaunpur, Jaunpur, UP, India.
| |
Collapse
|
5
|
Kang Y, Zhang W, Lv Y, Xu H, Lin Y, Cai S, Wang J, Huang L. Genetic polymorphism in catechol-O-methyltransferase associated with the functional connectivity of frontostriatal circuits in first episode schizophrenia patients. Eur J Neurosci 2019; 51:2134-2142. [PMID: 31876034 DOI: 10.1111/ejn.14659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Negative symptoms in schizophrenia have been associated with functional changes in frontostriatal pathways. Dysregulation of the dopamine signal in frontostriatal pathways leads to the symptomology observed in schizophrenia. Although the catechol-O-methyltransferase (COMT) gene, one of the susceptibility genes for schizophrenia, has been associated with dopamine activities in prefrontal and striatal regions, it is still unclear whether the disease state and COMT val158 met genotype have an interaction effect on the functional connectivity of frontostriatal pathways. In this study, we evaluated the possible interactions between COMT val158 met variations and the disease state on the resting-state functional connectivity (RSFC) of frontostriatal pathways in fifty-one first episode schizophrenia (FES) patients (val/val: 29, met +: 22) with prominent negative symptoms and forty-eight healthy controls (val/val: 31, met +: 17). Regions of interest were defined by the result of a meta-analysis of frontostriatal pathways using the Neurosynth database. We found a significant genotype × disease interaction effect on the RSFC between the bilateral anterior cingulate (ACC) and right caudate, which overlapped with the main effect of the disease state. Behavioural regression analysis suggested that RSFC between the right ACC and right caudate correlated with the severity of SANS avolition-apathy scores in patients who were met carriers but not in patients who were val homozygous. Our findings suggest that the RSFC of frontostriatal pathways may differentially affected by an individual's COMT val158 met genotype.
Collapse
Affiliation(s)
- Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hanxiao Xu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yanyan Lin
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Li Q, Liu S, Guo M, Yang CX, Xu Y. The Principles of Electroconvulsive Therapy Based on Correlations of Schizophrenia and Epilepsy: A View From Brain Networks. Front Neurol 2019; 10:688. [PMID: 31316456 PMCID: PMC6610531 DOI: 10.3389/fneur.2019.00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Electroconvulsive therapy (ECT) was established based on Meduna's hypothesis that there is an antagonism between schizophrenia and epilepsy, and that the induction of a seizure could alleviate the symptoms of schizophrenia. However, subsequent investigations of the mechanisms of ECT have largely ignored this originally established relationship between these two disorders. With the development of functional magnetic resonance imaging (fMRI), brain-network studies have demonstrated that schizophrenia and epilepsy share common dysfunctions in the default-mode network (DMN), saliency network (SN), dorsal-attention network (DAN), and central-executive network (CEN). Additionally, fMRI-defined brain networks have also been shown to be useful in the evaluation of the treatment efficacy of ECT. Here, we compared the ECT-induced changes in the pathological conditions between schizophrenia and epilepsy in order to offer further insight as to whether the mechanisms of ECT are truly based on antagonistic and/or affinitive relationships between these two disorders.
Collapse
Affiliation(s)
- Qi Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Meng Guo
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Cheng-Xiang Yang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China.,National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China.,Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Kang Y, Huang K, Lv Y, Zhang W, Cai S, Wang Y, Wang Q, Huang L, Wang J, Tian J. Genetic contribution of catechol-O-methyltransferase in dorsolateral prefrontal cortex functional changes in the first episode schizophrenia. Behav Brain Res 2019; 364:225-232. [PMID: 30738913 DOI: 10.1016/j.bbr.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
Catechol-O-methyltransferase (COMT) gene variants have been reported to be implicated in the pathogenesis of psychotic symptoms in schizophrenia, especially in negative symptoms. These symptoms including apathy, blunted affect, social withdrawal and motor retardation. Neuroimaging studies suggested that negative symptoms appear to be associated with impaired activities of the prefrontal cortex in particular the dorsolateral prefrontal cortex (DLPFC). Given that the COMT gene is highly expressed in the DLPFC, it is poorly understood whether the disease state and COMT val158met polymorphisms have main and interactive effect on the resting state functional connectivity (RSFC) of DLPFC-related pathways. To this end, fifty-five first episode schizophrenia (FES) and fifty-three healthy controls were genotyped using blood samples and underwent magnetic resonance imaging scanning. Seed-based voxel wise functional connectivity analysis was performed by placing bilateral pairs of seeds with DLPFC in area 46 defined by Brodmann's atlas. A two-ways ANCOVA model was performed with val158met genotypes and disease state as the between subjects factors. Significant disease × COMT interactive effect was found mainly in the left DLPFC with the left anterior cingulate cortex, right precuneus, right superior parietal gyrus, which were overlapped with disease main effect. And these RSFC had positive correlations with affective blunting scores in FES patients with val homozygotes, but not with met carriers. Our results showed that the disease and the genotypes in COMT gene have significant interactive effect on RSFC of DLPFC and provided evidence for a disease-dependent pattern of gene action.
Collapse
Affiliation(s)
- Yafei Kang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Kexin Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yahui Lv
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China; Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|