1
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04261-x. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
3
|
Guévremont D, Roy J, Cutfield NJ, Williams JM. MicroRNAs in Parkinson's disease: a systematic review and diagnostic accuracy meta-analysis. Sci Rep 2023; 13:16272. [PMID: 37770507 PMCID: PMC10539377 DOI: 10.1038/s41598-023-43096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Current clinical tests for Parkinson's disease (PD) provide insufficient diagnostic accuracy leading to an urgent need for improved diagnostic biomarkers. As microRNAs (miRNAs) are promising biomarkers of various diseases, including PD, this systematic review and meta-analysis aimed to assess the diagnostic accuracy of biofluid miRNAs in PD. All studies reporting data on miRNAs expression in PD patients compared to controls were included. Gene targets and significant pathways associated with miRNAs expressed in more than 3 biofluid studies with the same direction of change were analyzed using target prediction and enrichment analysis. A bivariate model was used to calculate sensitivity, specificity, likelihood ratios, and diagnostic odds ratio. While miR-24-3p and miR-214-3p were the most reported miRNA (7 each), miR-331-5p was found to be consistently up regulated in 4 different biofluids. Importantly, miR-19b-3p, miR-24-3p, miR-146a-5p, and miR-221-3p were reported in multiple studies without conflicting directions of change in serum and bioinformatic analysis found the targets of these miRNAs to be associated with pathways important in PD pathology. Of the 102 studies from the systematic review, 15 studies reported sensitivity and specificity data on combinations of miRNAs and were pooled for meta-analysis. Studies (17) reporting sensitivity and specificity data on single microRNA were pooled in a separate meta-analysis. Meta-analysis of the combinations of miRNAs (15 studies) showed that biofluid miRNAs can discriminate between PD patients and controls with good diagnostic accuracy (sensitivity = 0.82, 95% CI 0.76-0.87; specificity = 0.80, 95% CI 0.74-0.84; AUC = 0.87, 95% CI 0.83-0.89). However, we found multiple studies included more males with PD than any other group therefore possibly introducing a sex-related selection bias. Overall, our study captures key miRNAs which may represent a point of focus for future studies and the development of diagnostic panels whilst also highlighting the importance of appropriate study design to develop representative biomarker panels for the diagnosis of PD.
Collapse
Affiliation(s)
- Diane Guévremont
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
| | - Joyeeta Roy
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Nicholas J Cutfield
- Brain Health Research Centre, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
- Brain Health Research Centre, Dunedin, New Zealand.
| |
Collapse
|
4
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
5
|
Fu X, Deng W, Cui X, Zhou X, Song W, Pan M, Chi X, Xu J, Jiang Y, Wang Q, Xu Y. Time-Specific Pattern of Iron Deposition in Different Regions in Parkinson's Disease Measured by Quantitative Susceptibility Mapping. Front Neurol 2021; 12:631210. [PMID: 34421781 PMCID: PMC8371047 DOI: 10.3389/fneur.2021.631210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Studies have shown the spatial specificity of cranial iron deposition in different regions in Parkinson's disease (PD). However, the time-specific patterns of iron deposition are not yet clear. The purpose of this study was to investigate the time pattern of iron variations and its clinical relevance in multiple gray matter nuclei in PD using quantitative susceptibility mapping (QSM). Thirty controls and 33 PD patients were enrolled, namely, 11 cases of early stage of PD (ESP) and 22 cases of advanced stage of PD (ASP) according to the Hoehn-Yahr stages. The iron content in the subcortical nuclei covering substantia nigra (SN), red nucleus (RN), head of the caudate nucleus (CN), globus pallidus (GP), and putamen (PT) was measured using QSM, and the clinical symptoms of PD were evaluated by various rating scales. The QSM values in SN, RN, GP, and PT significantly increased in PD patients compared with the controls. Further subgroup comparison with the controls indicated that the iron content in SN and GP (paleostriatum) gradually elevated in the whole disease duration and was related to clinical features. While the iron content in RN and PT (neostriatum) only elevated significantly in ESP patients, further iron deposition was not obvious in ASP patients. Our study confirmed that QSM could be used as a disease biomarker and could be suitable for longitudinal monitoring. However, considering the temporal characteristics of iron deposition in neostriatum, iron deposition in the neostriatum should be paid more attention in the early stage of the disease, even in the preclinical stage, in future research.
Collapse
Affiliation(s)
- Xiaodi Fu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenbin Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqin Cui
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Zhou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weizheng Song
- Department of Neurosurgery, the Eighth People's Hospital of Chengdu, Chengdu, China
| | - Mengqiu Pan
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xiao Chi
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinghui Xu
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Jiang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qun Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yang Y, Li Y, Yang H, Guo J, Li N. Circulating MicroRNAs and Long Non-coding RNAs as Potential Diagnostic Biomarkers for Parkinson's Disease. Front Mol Neurosci 2021; 14:631553. [PMID: 33762908 PMCID: PMC7982809 DOI: 10.3389/fnmol.2021.631553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the world’s second most common neurodegenerative disease that is associated with age. With the aging of the population, patients with PD are increasing in number year by year. Most such patients lose their ability to self-care with disease progression, which brings an incalculable burden to individual families and society. The pathogenesis of PD is complex, and its clinical manifestations are diverse. Therefore, it is of great significance to screen for circulating biomarkers associated with PD to reveal its pathogenesis and develop objective diagnostic methods so as to prevent, control, and treat the disease. In recent years, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are considered to be effective biomarkers for various diseases due to their stability, and resistance to RNAase digestion and extreme conditions in circulating fluids. Here, we review recent advances in the detection of abnormally expressed miRNAs and lncRNAs in PD circulating fluids, and discuss the function and molecular mechanisms of plasma or serum miR-124, miR-132, miR-29, miR-221, miR-7, miR-433, and miR-153 in the regulation and progression of PD. Additionally, application of the differential expression of lncRNAs in circulating fluid in the pathological progression and diagnosis of PD is also reviewed. In short, the determination of abnormally expressed circulating miRNAs and lncRNAs will be valuable for the future diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Yimin Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Jianxing Guo
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Li X, Si W, Li Z, Tian Y, Liu X, Ye S, Huang Z, Ji Y, Zhao C, Hao X, Chen D, Zhu M. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease. Int J Mol Med 2021; 47:61. [PMID: 33649797 PMCID: PMC7910012 DOI: 10.3892/ijmm.2021.4894] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). In a previous study, the authors demonstrated that ferritin heavy chain 1 (FTH1) inhibited ferroptosis in a model of 6-hydroxydopamine (6-OHDA)-induced PD. However, whether and how microRNAs (miRNAs/miRs) modulate FTH1 in PD ferroptosis is not yet well understood. In the present study, in vivo and in vitro models of PD induced by 6-OHDA were established. The results in vivo and in vitro revealed that the levels of the ferroptosis marker protein, glutathione peroxidase 4 (GPX4), and the PD marker protein, tyrosine hydroxylase (TH), were decreased in the model group, associated with a decreased FTH1 expression and the upregulation of miR-335. In both the in vivo and in vitro models, miR-335 mimic led to a lower FTH1 expression, exacerbated ferroptosis and an enhanced PD pathology. The luciferase 3′-untranslated region reporter results identified FTH1 as the direct target of miR-335. The silencing of FTH1 in 6-OHDA-stimulated cells enhanced the effects of miR-335 on ferroptosis and promoted PD pathology. Mechanistically, miR-335 enhanced ferroptosis through the degradation of FTH1 to increase iron release, lipid peroxidation and reactive oxygen species (ROS) accumulation, and to decrease mitochondrial membrane potential (MMP). On the whole, the findings of the present study reveal that miR-335 promotes ferroptosis by targeting FTH1 in in vitro and in vivo models of PD, providing a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Wenwen Si
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Zhan Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510010, P.R. China
| | - Ye Tian
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Xuelei Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Yichun Ji
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Caiping Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| |
Collapse
|
8
|
Rezaei O, Nateghinia S, Estiar MA, Taheri M, Ghafouri-Fard S. Assessment of the role of non-coding RNAs in the pathophysiology of Parkinson's disease. Eur J Pharmacol 2021; 896:173914. [PMID: 33508286 DOI: 10.1016/j.ejphar.2021.173914] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second main neurodegenerative disease causing motor abnormalities in the middle-aged and old individuals. In some cases, cognitive dysfunction also occurs. The clinical signs of PD are bradykinesia, rigidity and resting tremor. As these signs might be detected in other neurological conditions such as multiple systems atrophy and corticobasal degeneration, it is necessary to find specific and sensitive markers for this disorder. Non-coding RNAs are implicated in the different PD-associated features such as α-synuclein expression and Lewy body construction, mitochondrial dysfunction, apoptosis, neuroinflammation and defects in glial cell-derived neurotrophic factor. Several researches have confirmed dysregulation of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in brain tissues, plasma exosomes and leukocytes of affected individuals or animal models of PD. A number of these transcripts directly regulate the neurodegenerative process in PD. In the current study, we review the current data about dysregulation of ncRNAs and the role of their genomic variants in the pathogenesis of PD.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lu J, Zhou Z, Sun B, Han B, Fu Q, Han Y, Yuan W, Xu Z, Chen A. MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging (Albany NY) 2020; 12:18545-18560. [PMID: 32950972 PMCID: PMC7585120 DOI: 10.18632/aging.103831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in the chondrogenesis and the progression of osteoarthritis (OA). This study aimed to determine miRNAs associated with chondrogenesis of human mesenchymal stem cells (hMSCs) and chondrocyte metabolism. MiRNAs were screened in hMSCs during chondrogenesis by RNA-seq and qRT-PCR. MiRNA expression was determined in primary human chondrocytes (PHCs), and degraded cartilage samples. MiRNA mimics and inhibitors were transfected to cells to determine the effect of miRNA. Bioinformatic analysis and luciferase reporter assays were applied to determine the target gene of miRNA. The results demonstrated that miR-520d-5p was increased in hMSCs chondrogenesis. The overexpression and knockdown of miR-520d-5p promoted and inhibited chondrogenesis, and regulated chondrocyte metabolism. Histone deacetylase 1 (HDAC1) was decreased in hMSCs chondrogenesis, and HDAC1 was a targeting gene of miR-520d-5p. CI994, HDAC1 inhibitor, elevated cartilage-specific gene expressions and promoted hMSCs chondrogenesis. In IL-1β-treated PHCs, CI994 promoted AGGRECAN expression and suppressed MMP-13 expression, abolishing the effect of IL-1β on PHCs. Taken together, these results suggest that miR-520d-5p promotes hMSCs chondrogenesis and regulates chondrocyte metabolism through targeting HDAC1. This study provides novel understanding of the molecular mechanism of OA progression.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Zhibin Zhou
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Bin Sun
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Bin Han
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Qiang Fu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Yaguang Han
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Wang Yuan
- Department of Medicinal and Materials, General Hospital of Northern Theater Command, Shenyang, P. R. of China
| | - Zeng Xu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Aimin Chen
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| |
Collapse
|
10
|
Ardashirova NS, Fedotova EY, Illarioshkin SN. The Role of MicroRNA in the Pathogenesis and Diagnostics of Parkinson’s Disease. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Schulz J, Takousis P, Wohlers I, Itua IOG, Dobricic V, Rücker G, Binder H, Middleton L, Ioannidis JPA, Perneczky R, Bertram L, Lill CM. Meta-analyses identify differentially expressed micrornas in Parkinson's disease. Ann Neurol 2020; 85:835-851. [PMID: 30990912 DOI: 10.1002/ana.25490] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE MicroRNA (miRNA)-mediated (dys)regulation of gene expression has been implicated in Parkinson's disease (PD), although results of miRNA expression studies remain inconclusive. We aimed to identify miRNAs that show consistent differential expression across all published expression studies in PD. METHODS We performed a systematic literature search on miRNA expression studies in PD and extracted data from eligible publications. After stratification for brain, blood, and cerebrospinal fluid (CSF)-derived specimen, we performed meta-analyses across miRNAs assessed in three or more independent data sets. Meta-analyses were performed using effect-size- and p-value-based methods, as applicable. RESULTS After screening 599 publications, we identified 47 data sets eligible for meta-analysis. On these, we performed 160 meta-analyses on miRNAs quantified in brain (n = 125), blood (n = 31), or CSF (n = 4). Twenty-one meta-analyses were performed using effect sizes. We identified 13 significantly (Bonferroni-adjusted α = 3.13 × 10-4 ) differentially expressed miRNAs in brain (n = 3) and blood (n = 10) with consistent effect directions across studies. The most compelling findings were with hsa-miR-132-3p (p = 6.37 × 10-5 ), hsa-miR-497-5p (p = 1.35 × 10-4 ), and hsa-miR-133b (p = 1.90 × 10-4 ) in brain and with hsa-miR-221-3p (p = 4.49 × 10-35 ), hsa-miR-214-3p (p = 2.00 × 10-34 ), and hsa-miR-29c-3p (p = 3.00 × 10-12 ) in blood. No significant signals were found in CSF. Analyses of genome-wide association study data for target genes of brain miRNAs showed significant association (α = 9.40 × 10-5 ) of genetic variants in nine loci. INTERPRETATION We identified several miRNAs that showed highly significant differential expression in PD. Future studies may assess the possible role of the identified brain miRNAs in pathogenesis and disease progression as well as the potential of the top blood miRNAs as biomarkers for diagnosis, progression, or prediction of PD. ANN NEUROL 2019;85:835-851.
Collapse
Affiliation(s)
- Jessica Schulz
- Genetic and Molecular Epidemiology Group, Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Petros Takousis
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Inken Wohlers
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics & Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Ivie O G Itua
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics & Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Gerta Rücker
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Harald Binder
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - John P A Ioannidis
- Departments of Medicine, Health Research and Policy, Biomedical Data Science, and Statistics, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, CA
| | - Robert Perneczky
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,West London Mental Health NHS Trust, London, United Kingdom
| | - Lars Bertram
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom.,Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics & Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christina M Lill
- Genetic and Molecular Epidemiology Group, Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, University of Lübeck, Lübeck, Germany.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, United Kingdom
| |
Collapse
|
12
|
Doxakis E. Cell-free microRNAs in Parkinson's disease: potential biomarkers that provide new insights into disease pathogenesis. Ageing Res Rev 2020; 58:101023. [PMID: 32001380 DOI: 10.1016/j.arr.2020.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are master post-transcriptional regulators of gene expression and their specific footprints reflect disease conditions. Over the last few years, several primary reports have described the deregulation of cell-free miRNAs in Parkinson's disease (PD), however, results have been rather inconsistent due to preanalytical and analytical challenges. This study integrated the data across twenty-four reports to identify steadily deregulated miRNAs that may assist in the path towards biomarker development and molecular characterization of the underlying pathology. Stringent KEGG pathway analysis of the miRNA targets revealed FoxO, Prolactin, TNF, and ErbB signaling pathways as the most significantly enriched categories while Gene Ontology analysis revealed that the protein targets are mostly associated with transcription. Chromosomal location of the consistently deregulated miRNAs revealed that over a third of them were clustered at the same location at Chr14q32 suggesting that they are co-regulated by specific transcription factors. This genomic region is inherently unstable due to expanded TGG repeats and responsible for human abnormalities. Stringent analysis of transcription factor sites surrounding the deregulated miRNAs revealed that CREB1, CEBPB and MAZ sites existed in approximately half of the miRNAs, including all of the miRNAs located at Chr14q32. Additional studies are now needed to determine the biomarker potential of the consistently deregulated miRNAs in PD and the therapeutic implications of these bioinformatics insights.
Collapse
|
13
|
Ramaswamy P, Yadav R, Pal PK, Christopher R. Clinical Application of Circulating MicroRNAs in Parkinson's Disease: The Challenges and Opportunities as Diagnostic Biomarker. Ann Indian Acad Neurol 2020; 23:84-97. [PMID: 32055127 PMCID: PMC7001448 DOI: 10.4103/aian.aian_440_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Discovery of evolutionarily conserved, nonprotein-coding, endogenous microRNAs has induced a paradigm shift in the overall understanding of gene regulation. Now, microRNAs are considered and classified as master regulators of gene expression as they regulate a wide range of processes – gene regulation, splicing, translation and posttranscriptional modifications. Besides, dysregulated microRNAs have been related to many diseases, including Parkinson's and related disorders. Several studies proposed that differentially expressed microRNAs as a potential biomarker. So far, there is no accepted clinical diagnostic test for Parkinson's disease based on biochemical analysis of biological fluids. However, circulating microRNAs possess many vital features typical of reliable biomarkers and discriminates Parkinson's patients from healthy control with much higher sensitivity and specificity. Though they show tremendous promise as a putative biomarker, translating these research findings to clinical application is often met with many obstacles. Most of the candidate microRNAs reported as a diagnostic biomarker is not organ-specific, and their overlap is low between studies. Therefore this review aimed to highlight the challenges in the application of microRNA in guiding disease discrimination decisions and its future prospects as a diagnostic biomarker in Parkinson's Disease.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|