1
|
Fahs HZ, Refai FS, Gopinadhan S, Moussa Y, Gan HH, Hunashal Y, Battaglia G, Cipriani PG, Ciancia C, Rahiman N, Kremb S, Xie X, Pearson YE, Butterfoss GL, Maizels RM, Esposito G, Page AP, Gunsalus KC, Piano F. A new class of natural anthelmintics targeting lipid metabolism. Nat Commun 2025; 16:305. [PMID: 39746976 PMCID: PMC11695593 DOI: 10.1038/s41467-024-54965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus. AFA shows significant efficacy in H. polygyrus infected mice. In C. elegans, AFA exposure affects all developmental stages, causing paralysis, impaired mitochondrial respiration, increased reactive oxygen species production and mitochondrial damage. In embryos, AFAs penetrate the eggshell and induce rapid developmental arrest. Genetic and biochemical tests reveal that AFAs inhibit POD-2, encoding an acetyl CoA carboxylase, the rate-limiting enzyme in lipid biosynthesis. These results uncover a new anthelmintic class affecting lipid metabolism.
Collapse
Affiliation(s)
- Hala Zahreddine Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Fathima S Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suma Gopinadhan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yasmine Moussa
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Yamanappa Hunashal
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Gennaro Battaglia
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", 80138, Naples, Italy
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Nabil Rahiman
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stephan Kremb
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Xin Xie
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yanthe E Pearson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Gennaro Esposito
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Fabio Piano
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Apari P, Földvári G. How Do Trematodes Induce Cancer? A Possible Evolutionary Adaptation of an Oncogenic Agent Transmitted by Flukes. Evol Appl 2025; 18:e70070. [PMID: 39845579 PMCID: PMC11751881 DOI: 10.1111/eva.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
There is strong epidemiological evidence that development of various cancer types is linked to infection with flukes (Platyhelminthes: Trematoda) in Africa, Asia and the Middle East. The exact nature of the mechanism by which cancer is induced by these parasites is unknown. Here, we provide a new hypothesis suggesting that flukes are not the primary cause of cancer but act as vectors of cancer-inducing microbial pathogens. These pathogens adaptively induce tumours to attract and help flukes to feed on blood from the tumour. Pathogen take-up by fluke vectors also takes place in the tumour; therefore, tumour formation in this case is the result of a mutualistic and adaptive relationship between the microbe and the helminth parasite. The suggested mechanism for cancer induction provided here may help us gain deeper understanding about cancer in general and its relationship with microbes and parasites. By further elaborating the unique nexus between flukes, carcinogenic microbes and cancer, in the future it will also help us to broaden our oncological perspective to reduce human death and suffering from this serious disease group.
Collapse
Affiliation(s)
| | - Gábor Földvári
- Institute of EvolutionHUN‐REN Centre for Ecological ResearchBudapestHungary
- Centre for Eco‐EpidemiologyNational Laboratory for Health SecurityBudapestHungary
| |
Collapse
|
3
|
Wiraphongthongchai W, Sithithaworn P, Thinkhamrop K, Suwannatrai K, Kopolrat KY, Worasith C, Suwannatrai AT. Epidemiology of Strongyloides stercoralis and Opisthorchis viverrini infections in northern and northeastern Thailand: Insights from urine-ELISA surveys. Parasitol Res 2024; 123:417. [PMID: 39714601 DOI: 10.1007/s00436-024-08427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
Strongyloides stercoralis and Opisthorchis viverrini are helminth parasites responsible for significantly neglected tropical diseases. This study aimed to evaluate the prevalence of these parasites and the risk factors for S. stercoralis and O. viverrini infections in northern and northeastern Thailand where relevant epidemiological data are scarce and outdated. A cross-sectional study was conducted in 2016 in six sub-districts across five provinces. Urine samples were analyzed to detect S. stercoralis and O. viverrini infection using urine enzyme-linked immunosorbent assays (urine-ELISA). Demographic data of participants were collected using a questionnaire. Environmental data, including land-surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and soil pH, were obtained from remote-sensing sources. Multiple logistic regression analysis identified risk factors associated with infection. Complete data were obtained for 2613 individuals. The overall prevalence was 39.15% (95% CI: 37.27-41.02) for S. stercoralis and 37.46% (95% CI: 35.61-39.32) for O. viverrini. Male sex was significantly associated with S. stercoralis (AOR, 1.53; 95% CI, 1.29-1.80, p < 0.001) and O. viverrini infections (AOR, 1.69; 95% CI, 1.43-2.00, p < 0.001). The prevalence of S. stercoralis infection increased with age. Spatially, the odds of S. stercoralis infection decreased with higher LST and soil pH, while O. viverrini infection was associated with higher soil pH and proximity to water bodies. Strongyloides stercoralis and O. viverrini are highly prevalent in these regions, highlighting the need for surveillance.
Collapse
Affiliation(s)
- Wansiri Wiraphongthongchai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kavin Thinkhamrop
- Health and Epidemiology Geoinformatics Research (HEGER), Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Kulwadee Suwannatrai
- Department of Biology, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, Thailand
| | - Kulthida Y Kopolrat
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Chanika Worasith
- Department of Adult Nursing, Faculty of Nursing, Khon Kaen University, Khon Kaen, Thailand
| | - Apiporn T Suwannatrai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. PLoS Negl Trop Dis 2024; 18:e0012529. [PMID: 39689121 DOI: 10.1371/journal.pntd.0012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/31/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Mariam Desouky
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Astra S Bryant
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612595. [PMID: 39314377 PMCID: PMC11419086 DOI: 10.1101/2024.09.12.612595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mariam Desouky
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
McClure CR, Patel R, Hallem EA. Invade or die: behaviours and biochemical mechanisms that drive skin penetration in Strongyloides and other skin-penetrating nematodes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220434. [PMID: 38008119 PMCID: PMC10676818 DOI: 10.1098/rstb.2022.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 11/28/2023] Open
Abstract
Skin-penetrating nematodes, including the human threadworm Strongyloides stercoralis and hookworms in the genera Necator and Ancylostoma, are gastrointestinal parasites that are a major cause of neglected tropical disease in low-resource settings worldwide. These parasites infect hosts as soil-dwelling infective larvae that navigate towards hosts using host-emitted sensory cues such as odorants and body heat. Upon host contact, they invade the host by penetrating through the skin. The process of skin penetration is critical for successful parasitism but remains poorly understood and understudied. Here, we review current knowledge of skin-penetration behaviour and its underlying mechanisms in the human parasite S. stercoralis, the closely related rat parasite Strongyloides ratti, and other skin-penetrating nematodes such as hookworms. We also highlight important directions for future investigations into this underexplored process and discuss how recent advances in molecular genetic and genomic tools for Strongyloides species will enable mechanistic investigations of skin penetration and other essential parasitic behaviours in future studies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Courtney R. McClure
- Molecular Toxicology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Al-Jawabreh R, Anderson R, Atkinson LE, Bickford-Smith J, Bradbury RS, Breloer M, Bryant AS, Buonfrate D, Cadd LC, Crooks B, Deiana M, Grant W, Hallem E, Hedtke SM, Hunt V, Khieu V, Kikuchi T, Kounosu A, Lastik D, van Lieshout L, Liu Y, McSorley HJ, McVeigh P, Mousley A, Murcott B, Nevin WD, Nosková E, Pomari E, Reynolds K, Ross K, Streit A, Suleiman M, Tiberti N, Viney M. Strongyloides questions-a research agenda for the future. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230004. [PMID: 38008122 PMCID: PMC10676812 DOI: 10.1098/rstb.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 11/28/2023] Open
Abstract
The Strongyloides genus of parasitic nematodes have a fascinating life cycle and biology, but are also important pathogens of people and a World Health Organization-defined neglected tropical disease. Here, a community of Strongyloides researchers have posed thirteen major questions about Strongyloides biology and infection that sets a Strongyloides research agenda for the future. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
| | - Roy Anderson
- Department of Infectious Disease Epidemiology, Imperial College London, London SW7 2BX, UK
| | - Louise E. Atkinson
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | | | | | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Astra S. Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | - Dora Buonfrate
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Luke C. Cadd
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Bethany Crooks
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Michela Deiana
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Warwick Grant
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Elissa Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, University of California Los Angeles, Los Angeles 90095, USA
| | - Shannon M. Hedtke
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Vicky Hunt
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Virak Khieu
- National Centre for Parasitology, Entomology and Malaria Control, Cambodia Ministry of Health, Cambodia
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8652, Japan
| | - Asuka Kounosu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Dominika Lastik
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Yuchen Liu
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul McVeigh
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Angela Mousley
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Ben Murcott
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - William David Nevin
- Department of Infectious Diseases, Imperial College London, London SW7 2BX, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Eva Nosková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Elena Pomari
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Kieran Reynolds
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Mona Suleiman
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Natalia Tiberti
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Mark Viney
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Moerman TM, Albon SD, Coulson SJ, Loe LE. Climate change effects on terrestrial parasitic nematodes: Where are the knowledge gaps? J Helminthol 2023; 97:e94. [PMID: 38047417 DOI: 10.1017/s0022149x23000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Climate change is expected to affect parasitic nematodes and hence possibly parasite-host dynamics and may have far-reaching consequences for animal health, livestock production, and ecosystem functioning. However, there has been no recent overview of current knowledge to identify how studies could contribute to a better understanding of terrestrial parasitic nematodes under changing climates. Here we screened almost 1,400 papers to review 57 experimental studies on the effects of temperature and moisture on hatching, development, survival, and behaviour of the free-living stages of terrestrial parasitic nematodes with a direct life cycle in birds and terrestrial mammals. Two major knowledge gaps are apparent. First, research should study the temperature dependency curves for hatching, development, and survival under various moisture treatments to test the interactive effect of temperature and moisture. Second, we specifically advocate for more studies that investigate how temperature, and its interaction with moisture, affect both vertical and horizontal movement of parasitic nematodes to understand infection risks. Overall, we advocate for more field experiments that test environmental effects on life-history traits and behaviour of parasitic nematodes in their free-living stages under natural and realistic circumstances. We also encourage studies to expand the range of used hosts and parasitic nematodes because 66% of results described in the available studies use sheep and cattle as hosts and 32% involve just three nematode species. This new comprehension brings attention to understudied abiotic impacts on terrestrial parasitic nematodes and will have broader implications for livestock management, wildlife conservation, and ecosystem functioning in a rapidly warming climate.
Collapse
Affiliation(s)
- T M Moerman
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- The University Centre in Svalbard, P.O. Box 156, NO-9171 Longyearbyen, Norway
| | - S D Albon
- The James Hutton Institute, Craigiebuckler, AberdeenAB15 8QH, Scotland
| | - S J Coulson
- The University Centre in Svalbard, P.O. Box 156, NO-9171 Longyearbyen, Norway
| | - L E Loe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
9
|
Lillis PE, Kennedy IP, Carolan JC, Griffin CT. Low-temperature exposure has immediate and lasting effects on the stress tolerance, chemotaxis and proteome of entomopathogenic nematodes. Parasitology 2023; 150:15-28. [PMID: 36328953 PMCID: PMC10090647 DOI: 10.1017/s0031182022001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Temperature is one of the most important factors affecting soil organisms, including the infective stages of parasites and entomopathogenic nematodes, which are important biological control agents. We investigated the response of 2 species of entomopathogenic nematodes to different storage regimes: cold (9°C), culture temperature (20°C) and temperature swapped from 9 to 20°C. For Steinernema carpocapsae, cold storage had profound effects on chemotaxis, stress tolerance and protein expression that were retained in temperature-swapped individuals. These effects included reversal of chemotactic response for 3 (prenol, methyl salicylate and hexanol) of the 4 chemicals tested, and enhanced tolerance to freezing (−10°C) and desiccation (75% RH). Label-free quantitative proteomics showed that cold storage induced widespread changes in S. carpocapsae, including an increase in heat-shock proteins and late embryogenesis abundant proteins. For Heterorhabditis megidis, cold storage had a less dramatic effect on chemotaxis (as previously shown for proteomic expression) and changes were not maintained on return to 20°C. Thus, cold temperature exposure has significant effects on entomopathogenic nematodes, but the nature of the change depends on the species. Steinernema carpocapsae, in particular, displays significant plasticity, and its behaviour and stress tolerance may be manipulated by brief exposure to low temperatures, with implications for its use as a biological control agent.
Collapse
Affiliation(s)
- Peter E. Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Ian P. Kennedy
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | |
Collapse
|
10
|
Cadd LC, Crooks B, Marks NJ, Maule AG, Mousley A, Atkinson LE. The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites. Mol Biochem Parasitol 2022; 252:111526. [PMID: 36240960 DOI: 10.1016/j.molbiopara.2022.111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.
Collapse
Affiliation(s)
- Luke C Cadd
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
11
|
Lok JB, Kliewer SA, Mangelsdorf DJ. The 'nuclear option' revisited: Confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Mol Biochem Parasitol 2022; 250:111490. [PMID: 35697206 DOI: 10.1016/j.molbiopara.2022.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Mechanisms governing morphogenesis and development of infectious third-stage larvae (L3i) of parasitic nematodes have been likened to those regulating dauer development in Caenorhabditis elegans. Dauer regulatory signal transduction comprises initial G protein-coupled receptor (GPCR) signaling in chemosensory neurons of the amphidial complex that regulates parallel insulin- and TGFβ-like signaling in the tissues. Insulin- and TGFβ-like signals converge to co-regulate steroid signaling through the nuclear receptor (NR) DAF-12. Discovery of the steroid ligands of DAF-12 opened a new avenue of small molecule physiology in C. elegans. These signaling pathways are conserved in parasitic nematodes and an increasing body of evidence supports their function in formation and developmental regulation of L3i during the infectious process in soil transmitted species. This review presents these lines of evidence for G protein-coupled receptor (GPCR), insulin- and TGFβ-like signaling in brief and focuses primarily on signaling through parasite orthologs of DAF-12. We discuss in some depth the deployment of sensitive analytical techniques to identify Δ7-dafachronic acid as the natural ligand of DAF-12 homologs in Strongyloides stercoralis and Haemonchus contortus and of targeted mutagenesis by CRISPR/Cas9 to assign dauer-like regulatory function to the NR Ss-DAF-12, its coactivator Ss-DIP-1 and the key ligand biosynthetic enzyme Ss-CYP-22a9. Finally, we present published evidence of the potential of Ss-DAF-12 signaling as a chemotherapeutic target in human strongyloidiasis.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
12
|
Bryant AS, Ruiz F, Lee JH, Hallem EA. The neural basis of heat seeking in a human-infective parasitic worm. Curr Biol 2022; 32:2206-2221.e6. [PMID: 35483361 PMCID: PMC9158753 DOI: 10.1016/j.cub.2022.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Soil-transmitted parasitic nematodes infect over one billion people and cause devastating morbidity worldwide. Many of these parasites have infective larvae that locate hosts using thermal cues. Here, we identify the thermosensory neurons of the human threadworm Strongyloides stercoralis and show that they display unique functional adaptations that enable the precise encoding of temperatures up to human body temperature. We demonstrate that experience-dependent thermal plasticity regulates the dynamic range of these neurons while preserving their ability to encode host-relevant temperatures. We describe a novel behavior in which infective larvae spontaneously reverse attraction to heat sources at sub-body temperatures and show that this behavior is mediated by rapid adaptation of the thermosensory neurons. Finally, we identify thermoreceptors that confer parasite-specific sensitivity to body heat. Our results pinpoint the parasite-specific neural adaptations that enable parasitic nematodes to target humans and provide the foundation for drug development to prevent human infection.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joon Ha Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Takeishi A. Environmental-temperature and internal-state dependent thermotaxis plasticity of nematodes. Curr Opin Neurobiol 2022; 74:102541. [PMID: 35447377 DOI: 10.1016/j.conb.2022.102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Thermotaxis behavior of Caenorhabditis elegans is robust and highly plastic. A pair of sensory neurons, AFD, memorize environmental/cultivation temperature and communicate with a downstream neural circuit to adjust the temperature preference of the animal. This results in a behavioral bias where worms will move toward their cultivation temperature on a thermal gradient. Thermotaxis of C. elegans is also affected by the internal state and is temporarily abolished when worms are starved. Here I will discuss how C. elegans is able to modulate its behavior based on temperature by integrating environmental and internal information. Recent studies show that some parasitic nematodes have a similar thermosensory mechanism to C. elegans and exhibit cultivation-temperature-dependent thermotaxis. I will also discuss the common neural mechanisms that regulate thermosensation and thermotaxis in C. elegans and Strongyloides stercoralis.
Collapse
Affiliation(s)
- Asuka Takeishi
- RIKEN Center for Brain Science, RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Japan.
| |
Collapse
|
14
|
Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasit Vectors 2022; 15:110. [PMID: 35346328 PMCID: PMC8962113 DOI: 10.1186/s13071-022-05211-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.
Collapse
Affiliation(s)
- M J Quinzo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - M J Perteguer
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - A Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - J Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
15
|
Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes. Proc Natl Acad Sci U S A 2020; 117:17913-17923. [PMID: 32651273 DOI: 10.1073/pnas.1909710117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.
Collapse
|
16
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Gracheva EO, Bagriantsev SN. Neural mechanisms of thermoregulation. Neurosci Lett 2019; 707:134318. [PMID: 31170427 DOI: 10.1016/j.neulet.2019.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Sviatoslav N Bagriantsev
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Lok JB. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 2019; 10:656. [PMID: 31379923 PMCID: PMC6646703 DOI: 10.3389/fgene.2019.00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
DNA transformation of parasitic nematodes enables novel approaches to validating predictions from genomic and transcriptomic studies of these important pathogens. Notably, proof of principle for CRISPR/Cas9 mutagenesis has been achieved in Strongyloides spp., allowing identification of molecules essential to the functions of sensory neurons that mediate behaviors comprising host finding, invasion, and location of predilection sites by parasitic nematodes. Likewise, CRISPR/Cas9 knockout of the developmental regulatory transcription factor Ss-daf-16 has validated its function in regulating morphogenesis of infective third-stage larvae in Strongyloides stercoralis. While encouraging, these studies underscore challenges that remain in achieving straightforward validation of essential intervention targets in parasitic nematodes. Chief among these is the likelihood that knockout of multifunctional regulators like Ss-DAF-16 or its downstream mediator, the nuclear receptor Ss-DAF-12, will produce phenotypes so complex as to defy interpretation and will render affected worms incapable of infecting their hosts, thus preventing establishment of stable mutant lines. Approaches to overcoming these impediments could involve refinements to current CRISPR/Cas9 methods in Strongyloides including regulatable Cas9 expression from integrated transgenes and CRISPR/Cas9 editing to ablate specific functional motifs in regulatory molecules without complete knockout. Another approach would express transgenes encoding regulatory molecules of interest with mutations designed to similarly ablate or degrade specific functional motifs such as the ligand binding domain of Ss-DAF-12 while preserving core functions such as DNA binding. Such mutant transgenes would be expected to exert a dominant interfering effect on their endogenous counterparts. Published reports validate the utility of such dominant-negative approaches in Strongyloides.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|