1
|
Wu P, He B, Li X, Zhang H. Roles of microRNA-124 in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2023; 17:1298508. [PMID: 38034588 PMCID: PMC10687822 DOI: 10.3389/fncel.2023.1298508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI.
Collapse
Affiliation(s)
- Panxing Wu
- Department of Neurosurgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Bao He
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Xiaoliang Li
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, Jiangsu, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
2
|
Jiang S, Zheng C, Wen G, Bu B, Zhao S, Xu X. Down-regulation of NR2B receptors contributes to the analgesic and antianxiety effects of enriched environment mediated by endocannabinoid system in the inflammatory pain mice. Behav Brain Res 2022; 435:114062. [PMID: 35985400 DOI: 10.1016/j.bbr.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics. It has been reported that enriched environment (EE), as a new way of endogenous pharmacotherapy, is effective in attenuating chronic inflammatory pain. However, the underlying molecular mechanisms are still not fully understood. NMDA NR2B receptor plays a critical role in pain transmission and modulation. Thus, in this study, we aimed at the effect of EE on the NR2B receptors expression in the prefrontal cortex, hippocampus and thalamus in the inflammatory pain mice. The results showed a significant increase of NR2B receptors in the thalamus of mice at 7 d following injection of CFA in the subcutaneous of the bottom of the left hind paw. EE significantly reduced the duration of mechanical hypersensitivity and anxiety-related behavior and the expression of NR2B receptors as compared to the standard condition. Furthermore, EE significantly increased 2-arachidonoylglycero (2-AG) levels at 7 d in the inflammatory pain mice as compared to the standard condition, and the effect of EE on the behavior and the expression of NR2B receptors was abolished by intraperitoneal injection of AM281 (a selective antagonist of CB1 receptor). Elevated 2-AG levels by intraperitoneal injection of JZL184 (a selective inhibitor of MAGL, the enzyme responsible for 2-AG hydrolysis) produced the same effect as EE. Results from this study provide the evidence that EE mimics endocannabinoids to take analgesic and anti-anxiety activities by decreasing the expression of the NR2B receptors via the CB1 receptor in the thalamus, pending further studies.
Collapse
Affiliation(s)
- Shukun Jiang
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Chuanfei Zheng
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Bin Bu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Shuang Zhao
- China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Xiaoming Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| |
Collapse
|
3
|
Yu J, Ren L, Min S, Lv F, Luo J, Li P, Zhang Y. Inhibition of CB1 receptor alleviates electroconvulsive shock-induced memory impairment by regulating hippocampal synaptic plasticity in depressive rats. Psychiatry Res 2021; 300:113917. [PMID: 33848965 DOI: 10.1016/j.psychres.2021.113917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, but it can cause cognitive deficit. Unfortunately, effective preventive measures are still lacking. The endocannabinoid system is thought to play a key role in regulation of cognitive process. Whether the endocannabinoid system is involved in the learning and memory impairment caused by ECS remain unclear. In this work, we first found that cannabinoid receptor type 1 (CB1R) and 2-arachidonoylglycerol (2-AG) were strongly expressed in hippocampus by electroconvulsive shock (ECS) in a rat depression model established by chronic mild stress (CMS). Pharmacological inhibition of CB1R using AM251 in vivo resulted in a pronounced relief in ECS-induced spatial learning and memory impairment as well as in a marked reversal of impaired hippocampal long-term potentiation (LTP), and reduced synapse-related proteins expression. Furthermore, results of sucrose preference test (SPT) and open-field test (OFT) showed that AM251 had no significant impact on the therapeutic effects of ECS on pleasure and psychomotor activity. Taken together, we identified that CB1R is involved in the ECS-induced spatial learning and memory impairment and Inhibition of CB1R facilitates the recovery of memory impairment and hippocampal synaptic plasticity, without interfering with the therapeutic effects of ECS in depressed rats.
Collapse
Affiliation(s)
- Jian Yu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Ren
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Feng Lv
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Luo
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Li
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|
5
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|