1
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | | |
Collapse
|
2
|
Perrone S, Carloni S, Dell'Orto VG, Filonzi L, Beretta V, Petrolini C, Lembo C, Buonocore G, Esposito S, Nonnis Marzano F. Hypoxic ischemic brain injury: animal models reveal new mechanisms of melatonin-mediated neuroprotection. Rev Neurosci 2024; 35:331-339. [PMID: 38153803 DOI: 10.1515/revneuro-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum. Based on the interplay between inflammation and OS, it was demonstrated in the same model that inflammation reduced brain sirtuin-1 expression and affected the expression of specific miRNAs. Moreover, through proteomic approach, an increased expression of genes and proteins in cerebral cortex synaptosomes has been revealed after induction of neonatal H-I. Administration of melatonin in the experimental treatment of brain damage and neurodegenerative diseases has produced promising therapeutic results. Melatonin protects against OS, contributes to reduce the generation of pro-inflammatory factors and promotes tissue regeneration and repair. Starting from the above cited aspects, this educational review aims to discuss the inflammatory and OS main pathways in H-I brain injury, focusing on the role of melatonin as neuroprotectant and providing current and emerging evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, 61029 Urbino, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Laura Filonzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Lembo
- Department of Neonatology, APHP, Necker-Enfants, Malades Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Francesco Nonnis Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Buonvicino D, Pratesi S, Ranieri G, Pistolesi A, Guasti D, Chiarugi A. The mitochondriogenic but not the immunosuppressant effects of mTOR inhibitors prompt neuroprotection and delay disease evolution in a mouse model of progressive multiple sclerosis. Neurobiol Dis 2024; 191:106387. [PMID: 38142841 DOI: 10.1016/j.nbd.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/04/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Purportedly, the progression of multiple sclerosis (MS) occurs when neurodegenerative processes due to derangement of axonal bioenergetics take over the autoimmune response. However, a clear picture of the causative interrelationship between autoimmunity and axonal mitochondrial dysfunction in progressive MS (PMS) pathogenesis waits to be provided. METHODS In the present study, by adopting the NOD mouse model of PMS, we compared the pharmacological effects of the immunosuppressants dexamethasone and fingolimod with those of mTOR inhibitors rapamycin and everolimus that, in addition to immunosuppression, also regulate mitochondrial functioning. Female Non-Obese Diabetic (NOD) mice were immunized with MOG35-55 and treated with drugs to evaluate functional, immune and mitochondrial parameters during disease evolution. RESULTS We found that dexamethasone and fingolimod did not affect the pattern of progression as well as survival. Conversely, mTOR inhibitors rapamycin and everolimus delayed disease progression and robustly extended survival of immunized mice. The same effects were obtained when treatment was delayed by 30 days after immunization. Remarkably, dexamethasone and fingolimod prompted the same degree of immunosuppression of rapamycin within both spleen and spinal cord of mice. However, only rapamycin prompted mitochondriogenesis by increasing mitochondrial content, and expression of several mitochondrial respiratory complex subunits, thereby preventing mtDNA reduction in the spinal cords of immunized mice. These pharmacodynamic effects were not reproduced in healthy NOD mice, suggesting a disease context-dependent pharmacodynamic effect. DISCUSSION Data corroborate the key role of mitochondriogenesis to treatment of MS progression, and for the first time disclose the translational potential of mTOR inhibitors in PMS therapy.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Clemente-Suárez VJ, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24108848. [PMID: 37240194 DOI: 10.3390/ijms24108848] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of numerous diseases, including neurodegenerative disorders, metabolic disorders, and cancer. Mitochondrial transfer, the transfer of mitochondria from one cell to another, has recently emerged as a potential therapeutic approach for restoring mitochondrial function in diseased cells. In this review, we summarize the current understanding of mitochondrial transfer, including its mechanisms, potential therapeutic applications, and impact on cell death pathways. We also discuss the future directions and challenges in the field of mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
5
|
Greeck VB, Williams SK, Haas J, Wildemann B, Fairless R. Alterations in Lymphocytic Metabolism-An Emerging Hallmark of MS Pathophysiology? Int J Mol Sci 2023; 24:ijms24032094. [PMID: 36768415 PMCID: PMC9917089 DOI: 10.3390/ijms24032094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterised by acute inflammation and subsequent neuro-axonal degeneration resulting in progressive neurological impairment. Aberrant immune system activation in the periphery and subsequent lymphocyte migration to the CNS contribute to the pathophysiology. Recent research has identified metabolic dysfunction as an additional feature of MS. It is already well known that energy deficiency in neurons caused by impaired mitochondrial oxidative phosphorylation results in ionic imbalances that trigger degenerative pathways contributing to white and grey matter atrophy. However, metabolic dysfunction in MS appears to be more widespread than the CNS. This review focuses on recent research assessing the metabolism and mitochondrial function in peripheral immune cells of MS patients and lymphocytes isolated from murine models of MS. Emerging evidence suggests that pharmacological modulation of lymphocytic metabolism may regulate their subtype differentiation and rebalance pro- and anti-inflammatory functions. As such, further understanding of MS immunometabolism may aid the identification of novel treatments to specifically target proinflammatory immune responses.
Collapse
Affiliation(s)
- Viktoria B. Greeck
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah K. Williams
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Haas
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
6
|
Zhao JW, Wang DX, Ma XR, Dong ZJ, Wu JB, Wang F, Wu Y. Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS. Curr Opin Pharmacol 2022; 64:102205. [PMID: 35344763 DOI: 10.1016/j.coph.2022.102205] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
The key pathology of multiple sclerosis (MS) comprises demyelination, axonal damage, and neuronal loss, and when MS develops into the progressive phase it is essentially untreatable. Identifying new targets in both axons and oligodendrocyte progenitor cells (OPCs) and rejuvenating the aged OPCs holds promise for this unmet medical need. We summarize here the recent evidence showing that mitochondria in both axons and OPCs are impaired, and lipid metabolism of OPCs within demyelinated lesion and in the aged CNS is disturbed. Given that emerging evidence shows that rewiring cellular metabolism regulates stem cell aging, to protect axons from degeneration and promote differentiation of OPCs, we propose that restoring the impaired metabolism of both OPCs and axons in the aged CNS in a synergistic way could be a promising strategy to enhance remyelination in the aged CNS, leading to novel drug-based approaches to treat the progressive phase of MS.
Collapse
Affiliation(s)
- Jing-Wei Zhao
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Cryo-Electron Microscope Center, Zhejiang University, Hangzhou 310058, China.
| | - Di-Xian Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ru Ma
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhao-Jun Dong
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian-Bin Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fan Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Malla B, Liotta A, Bros H, Ulshöfer R, Paul F, Hauser AE, Niesner R, Infante-Duarte C. Teriflunomide Preserves Neuronal Activity and Protects Mitochondria in Brain Slices Exposed to Oxidative Stress. Int J Mol Sci 2022; 23:ijms23031538. [PMID: 35163469 PMCID: PMC8835718 DOI: 10.3390/ijms23031538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.
Collapse
Affiliation(s)
- Bimala Malla
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
| | - Agustin Liotta
- Klinik für Anästhesiologie mit Schwerpunkt Operative Intensivmedizin, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Helena Bros
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
| | - Rebecca Ulshöfer
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; (A.E.H.); (R.N.)
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; (A.E.H.); (R.N.)
- Dynamic and Functional In Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- Correspondence:
| |
Collapse
|
8
|
Positron emission tomography in multiple sclerosis - straight to the target. Nat Rev Neurol 2021; 17:663-675. [PMID: 34545219 DOI: 10.1038/s41582-021-00537-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Following the impressive progress in the treatment of relapsing-remitting multiple sclerosis (MS), the major challenge ahead is the development of treatments to prevent or delay the irreversible accumulation of clinical disability in progressive forms of the disease. The substrate of clinical progression is neuro-axonal degeneration, and a deep understanding of the mechanisms that underlie this process is a precondition for the development of therapies for progressive MS. PET imaging involves the use of radiolabelled compounds that bind to specific cellular and metabolic targets, thereby enabling direct in vivo measurement of several pathological processes. This approach can provide key insights into the clinical relevance of these processes and their chronological sequence during the disease course. In this Review, we focus on the contribution that PET is making to our understanding of extraneuronal and intraneuronal mechanisms that are involved in the pathogenesis of irreversible neuro-axonal damage in MS. We consider the major challenges with the use of PET in MS and the steps necessary to realize clinical benefits of the technique. In addition, we discuss the potential of emerging PET tracers and future applications of existing compounds to facilitate the identification of effective neuroprotective treatments for patients with MS.
Collapse
|
9
|
Martucci A, Landi D, Cesareo M, Di Carlo E, Di Mauro G, Sorge RP, Albanese M, Gabri Nicoletti C, Mataluni G, Mercuri NB, Di Marino M, Aiello F, Centonze D, Nucci C, Marfia GA, Mancino R. Complex Rearrangement of the Entire Retinal Posterior Pole in Patients with Relapsing Remitting Multiple Sclerosis. J Clin Med 2021; 10:jcm10204693. [PMID: 34682817 PMCID: PMC8537290 DOI: 10.3390/jcm10204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
There are consolidated data about multiple sclerosis (MS)–dependent retinal neurodegeneration occurring in the optic disk and the macula, although it is unclear whether other retinal regions are affected. Our objective is to evaluate, for the first time, the involvement of the entire retinal posterior pole in patients diagnosed with relapsing remitting multiple sclerosis (RRMS) unaffected by optic neuritis using Spectral Domain–Optical Coherence Tomography (SD–OCT). The study protocol was approved by Tor Vergata Hospital Institutional Ethics Committee (Approval number 107/16), and conforms to the tenets of the Declaration of Helsinki. After a comprehensive neurological and ophthalmological examination, 53 untreated RRMS patients (aged 37.4 ± 10) and 53 matched controls (aged 36.11 ± 12.94) were enrolled. In addition, each patient underwent an examination of the posterior pole using the SD-OCT built-in Spectralis posterior pole scanning protocol. After segmentation, the mean thickness, as well as the thickness of the 64 single regions of interest, were calculated for each retinal layer. No statistically significant difference in terms of average retinal thickness was found between the groups. However, MS patients showed both a significantly thinner ganglion cell layer (p < 0.001), and, although not statistically significant, a thinner inner nuclear layer (p = 0.072) and retinal nerve fiber layer (p = 0.074). In contrast, the retinal pigment epithelium (p = 0.014) and photoreceptor layers p < 0.001) resulted significantly thicker in these patients. Interestingly, the analysis of the region of interest showed that neurodegeneration was non-homogeneously distributed across each layer. This is the first report that suggests a complex rearrangement that affects, layer by layer, the entire retinal posterior pole of RRMS retinas in response to the underlying neurotoxic insult.
Collapse
Affiliation(s)
- Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy; (D.L.); (G.D.M.); (C.G.N.); (G.M.); (D.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
| | - Emiliano Di Carlo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Giovanni Di Mauro
- Multiple Sclerosis Clinical and Research Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy; (D.L.); (G.D.M.); (C.G.N.); (G.M.); (D.C.)
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy;
| | - Roberto Pietro Sorge
- Laboratory of Biometry, Department of Systems Medicine, University of Rome Tor Vergata, Via Cracovia, 50, 00133 Rome, Italy;
| | - Maria Albanese
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy;
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy; (D.L.); (G.D.M.); (C.G.N.); (G.M.); (D.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Giorgia Mataluni
- Multiple Sclerosis Clinical and Research Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy; (D.L.); (G.D.M.); (C.G.N.); (G.M.); (D.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy;
| | - Matteo Di Marino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
| | - Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy; (D.L.); (G.D.M.); (C.G.N.); (G.M.); (D.C.)
- Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense, 18, 86077 Pozzilli, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy; (D.L.); (G.D.M.); (C.G.N.); (G.M.); (D.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
- Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense, 18, 86077 Pozzilli, Italy
- Multiple Sclerosis Clinical and Research Unit, Tor Vergata Hospital, Viale Oxford, 81, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-0620903384; Fax: +39-0620904592
| | - Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.M.); (M.C.); (E.D.C.); (M.D.M.); (F.A.); (C.N.); (R.M.)
| |
Collapse
|
10
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
11
|
Chard DT, Alahmadi AAS, Audoin B, Charalambous T, Enzinger C, Hulst HE, Rocca MA, Rovira À, Sastre-Garriga J, Schoonheim MM, Tijms B, Tur C, Gandini Wheeler-Kingshott CAM, Wink AM, Ciccarelli O, Barkhof F. Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nat Rev Neurol 2021; 17:173-184. [PMID: 33437067 DOI: 10.1038/s41582-020-00439-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
MRI studies have provided valuable insights into the structure and function of neural networks, particularly in health and in classical neurodegenerative conditions such as Alzheimer disease. However, such work is also highly relevant in other diseases of the CNS, including multiple sclerosis (MS). In this Review, we consider the effects of MS pathology on brain networks, as assessed using MRI, and how these changes to brain networks translate into clinical impairments. We also discuss how this knowledge can inform the targeting of MS treatments and the potential future directions for research in this area. Studying MS is challenging as its pathology involves neurodegenerative and focal inflammatory elements, both of which could disrupt neural networks. The disruption of white matter tracts in MS is reflected in changes in network efficiency, an increasingly random grey matter network topology, relative cortical disconnection, and both increases and decreases in connectivity centred around hubs such as the thalamus and the default mode network. The results of initial longitudinal studies suggest that these changes evolve rather than simply increase over time and are linked with clinical features. Studies have also identified a potential role for treatments that functionally modify neural networks as opposed to altering their structure.
Collapse
Affiliation(s)
- Declan T Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK. .,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.
| | - Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France.,AP-HM, University Hospital Timone, Department of Neurology, Marseille, France
| | - Thalis Charalambous
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Enzinger
- Department of Neurology, Research Unit for Neuronal Repair and Plasticity, Medical University of Graz, Graz, Austria.,Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Neurology, Luton and Dunstable University Hospital, Luton, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alle Meije Wink
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK
| | - Frederik Barkhof
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | | |
Collapse
|
12
|
Buonvicino D, Ranieri G, Pratesi S, Gerace E, Muzzi M, Guasti D, Tofani L, Chiarugi A. Neuroprotection induced by dexpramipexole delays disease progression in a mouse model of progressive multiple sclerosis. Br J Pharmacol 2020; 177:3342-3356. [PMID: 32199028 DOI: 10.1111/bph.15058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Drugs able to counteract progressive multiple sclerosis (MS) represent a largely unmet therapeutic need. Even though the pathogenesis of disease evolution is still obscure, accumulating evidence indicates that mitochondrial dysfunction plays a causative role in neurodegeneration and axonopathy in progressive MS patients. Here, we investigated the effects of dexpramipexole, a compound with a good safety profile in humans and able to sustain mitochondria functioning and energy production, in a mouse model of progressive MS. EXPERIMENTAL APPROACH Female non-obese diabetic mice were immunized with MOG35-55 . Functional, immune and neuropathological parameters were analysed during disease evolution in animals treated or not with dexpramipexole. The compound's effects on bioenergetics and neuroprotection were also evaluated in vitro. KEY RESULTS We found that oral treatment with dexpramipexole at a dose consistent with that well tolerated in humans delayed disability progression, extended survival, counteracted reduction of spinal cord mitochondrial DNA content and reduced spinal cord axonal loss of mice. Accordingly, the drug sustained in vitro bioenergetics of mouse optic nerve and dorsal root ganglia and counteracted neurodegeneration of organotypic mouse cortical cultures exposed to the adenosine triphosphate-depleting agents oligomycin or veratridine. Dexpramipexole, however, was unable to affect the adaptive and innate immune responses both in vivo and in vitro. CONCLUSION AND IMPLICATION The present findings corroborate the hypothesis that neuroprotective agents may be of relevance to counteract MS progression and disclose the translational potential of dexpramipexole to treatment of progressive MS patients as a stand-alone or adjunctive therapy.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Lorenzo Tofani
- Clinical Trials Coordinating Center of Istituto Toscano Tumori, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|