1
|
Abellaneda-Pérez K, Potash RM, Pascual-Leone A, Sacchet MD. Neuromodulation and meditation: A review and synthesis toward promoting well-being and understanding consciousness and brain. Neurosci Biobehav Rev 2024; 166:105862. [PMID: 39186992 DOI: 10.1016/j.neubiorev.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | - Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
2
|
Sabaghypour S, Navi FFT, Basiri N, Shakibaei F, Zirak N. Differential roles of brain oscillations in numerical processing: evidence from resting-state EEG and mental number line. Front Hum Neurosci 2024; 18:1357900. [PMID: 38974482 PMCID: PMC11224460 DOI: 10.3389/fnhum.2024.1357900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Recent works point to the importance of emotions in special-numerical associations. There remains a notable gap in understanding the electrophysiological underpinnings of such associations. Exploring resting-state (rs) EEG, particularly in frontal regions, could elucidate emotional aspects, while other EEG measures might offer insights into the cognitive dimensions correlating with behavioral performance. The present work investigated the relationship between rs-EEG measures (emotional and cognitive traits) and performance in the mental number line (MNL). EEG activity in theta (3-7 Hz), alpha (8-12 Hz, further subdivided into low-alpha and high-alpha), sensorimotor rhythm (SMR, 13-15 Hz), beta (16-25 Hz), and high-beta/gamma (28-40 Hz) bands was assessed. 76 university students participated in the study, undergoing EEG recordings at rest before engaging in a computerized number-to-position (CNP) task. Analysis revealed significant associations between frontal asymmetry, specific EEG frequencies, and MNL performance metrics (i.e., mean direction bias, mean absolute error, and mean reaction time). Notably, theta and beta asymmetries correlated with direction bias, while alpha peak frequency (APF) and beta activity related to absolute errors in numerical estimation. Moreover, the study identified significant correlations between relative amplitude indices (i.e., theta/beta ratio, theta/SMR ratio) and both absolute errors and reaction times (RTs). Our findings offer novel insights into the emotional and cognitive aspects of EEG patterns and their links to MNL performance.
Collapse
Affiliation(s)
- Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | | - Fereshteh Shakibaei
- Behavioral Science Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negin Zirak
- Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Shah N, Qazi R, Chu XP. Unraveling the Tapestry of Pain: A Comprehensive Review of Ethnic Variations, Cultural Influences, and Physiological Mechanisms in Pain Management and Perception. Cureus 2024; 16:e60692. [PMID: 38899250 PMCID: PMC11186588 DOI: 10.7759/cureus.60692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The medical management of pain is a nuanced challenge influenced by sociocultural, demographic, and ethical factors. This review explores the intricate interplay of these dimensions in shaping pain perception and treatment outcomes. Sociocultural elements, encompassing cultural beliefs, language, societal norms, and healing practices, significantly impact individuals' pain experiences across societies. Gender expectations further shape these experiences, influencing reporting and responses. Patient implications highlight age-related and socioeconomic disparities in pain experiences, particularly among the elderly, with challenges in managing chronic pain and socioeconomic factors affecting access to care. Healthcare provider attitudes and biases contribute to disparities in pain management across racial and ethnic groups. Ethical considerations, especially in opioid use, raise concerns about subjective judgments and potential misuse. The evolving landscape of placebo trials adds complexity, emphasizing the importance of understanding psychological and cultural factors. In conclusion, evidence-based guidelines, multidisciplinary approaches, and tailored interventions are crucial for effective pain management. By acknowledging diverse influences on pain experiences, clinicians can provide personalized care, dismantle systemic barriers, and contribute to closing knowledge gaps, impacting individual and public health, well-being, and overall quality of life.
Collapse
Affiliation(s)
- Neelay Shah
- Neurology, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Rida Qazi
- Neurology, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Xiang-Ping Chu
- Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, USA
| |
Collapse
|
4
|
Bello UM, Wang J, Park ASY, Tan KWS, Cheung BWS, Thompson B, Cheong AMY. Can visual cortex non-invasive brain stimulation improve normal visual function? A systematic review and meta-analysis. Front Neurosci 2023; 17:1119200. [PMID: 36937668 PMCID: PMC10017867 DOI: 10.3389/fnins.2023.1119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective Multiple studies have explored the use of visual cortex non-invasive brain stimulation (NIBS) to enhance visual function. These studies vary in sample size, outcome measures, and methodology. We conducted a systematic review and meta-analyses to assess the effects of NIBS on visual functions in human participants with normal vision. Methods We followed the PRISMA guidelines, and a review protocol was registered with PROSPERO before study commencement (CRD42021255882). We searched Embase, Medline, PsychInfo, PubMed, OpenGrey and Web of Science using relevant keywords. The search covered the period from 1st January 2000 until 1st September 2021. Comprehensive meta-analysis (CMA) software was used for quantitative analysis. Results Fifty studies were included in the systematic review. Only five studies utilized transcranial magnetic stimulation (TMS) and no TMS studies met our pre-specified criteria for meta-analysis. Nineteen transcranial electrical stimulation studies (tES, 38%) met the criteria for meta-analysis and were the focus of our review. Meta-analysis indicated acute effects (Hedges's g = 0.232, 95% CI: 0.023-0.442, p = 0.029) and aftereffects (0.590, 95% CI: 0.182-0.998, p = 0.005) of tES on contrast sensitivity. Visual evoked potential (VEP) amplitudes were significantly enhanced immediately after tES (0.383, 95% CI: 0.110-0.665, p = 0.006). Both tES (0.563, 95% CI: 0.230-0.896, p = 0.001) and anodal-transcranial direct current stimulation (a-tDCS) alone (0.655, 95% CI: 0.273-1.038, p = 0.001) reduced crowding in peripheral vision. The effects of tES on visual acuity, motion perception and reaction time were not statistically significant. Conclusion There are significant effects of visual cortex tES on contrast sensitivity, VEP amplitude, an index of cortical excitability, and crowding among normally sighted individuals. Additional studies are required to enable a comparable meta-analysis of TMS effects. Future studies with robust experimental designs are needed to extend these findings to populations with vision loss. Clinical trial registration ClinicalTrials.gov/, identifier CRD42021255882.
Collapse
Affiliation(s)
- Umar M. Bello
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jingying Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Adela S. Y. Park
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Ken W. S. Tan
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Blossom W. S. Cheung
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Benjamin Thompson
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Allen M. Y. Cheong
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Allen M. Y. Cheong,
| |
Collapse
|
5
|
Aksu S, Uslu A, İşçen P, Tülay EE, Barham H, Soyata AZ, Demirtas-Tatlidede A, Yıldız GB, Bilgiç B, Hanağası H, Woods AJ, Karamürsel S, Uyar FA. Does transcranial direct current stimulation enhance cognitive performance in Parkinson's disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol Sci 2022; 43:4029-4044. [PMID: 35322340 DOI: 10.1007/s10072-022-06020-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Parkinson's disease-mild cognitive impairment (PD-MCI) is garnering attention as a key interventional period for cognitive impairment. Currently, there are no approved treatments for PD-MCI and encouraging results of transcranial direct current stimulation (tDCS) combined with other interventions have been proposed, though the efficacy and neural mechanisms of tDCS alone have not been studied in PD-MCI yet. OBJECTIVES The present double-blind, randomized, sham-controlled study assessed the effects of tDCS over the dorsolateral prefrontal cortex on cognitive functions via neuropsychological and electrophysiological evaluations in individuals with PD-MCI for the first time. METHOD Twenty-six individuals with PD-MCI were administered 10 sessions of active (n = 13) or sham (n = 13) prefrontal tDCS twice a day, for 5 days. Changes were tested through a comprehensive neuropsychological battery and event-related potential recordings, which were performed before, immediately, and 1 month after the administrations. RESULTS Neuropsychological assessment showed an improvement in delayed recall and executive functions in the active group. N1 amplitudes in response to targets in the oddball test-likely indexing attention and discriminability and NoGo N2 amplitudes in the continuous performance test-likely indexing cognitive control and conflict monitoring increased in the active group. Active stimulation elicited higher benefits 1 month after the administrations. CONCLUSION The present findings substantiate the efficacy of tDCS on cognitive control and episodic memory, along with the neural underpinnings of cognitive control, highlighting its potential for therapeutic utility in PD-MCI. TRIAL REGISTRATION NCT 04,171,804. Date of registration: 21/11/2019.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey.
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar İşçen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Emine Elif Tülay
- Department of Software Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Huzeyfe Barham
- Department of Psychiatry, Kırklareli Research and Training Hospital, Kırklareli, Turkey
| | | | | | | | - Başar Bilgiç
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet Hanağası
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, Cognitive Aging and Memory Clinical Translational Research Program, University of Florida, Gainesville, USA
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Fatma Aytül Uyar
- Department of Physiology, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Rebello-Sanchez I, Vasquez-Avila K, Parente J, Pacheco-Barrios K, De Melo PS, Teixeira PE, Jong K, Caumo W, Fregni F. Insights and Future Directions on the Combined Effects of Mind-Body Therapies with Transcranial Direct Current Stimulation: An Evidence-based Review. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022; 5:129-148. [PMID: 36583065 PMCID: PMC9797000 DOI: 10.4103/ijprm.jisprm-000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mind-body therapies (MBTs) use mental abilities to modify electrical neural activity across brain networks. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that modulates neuronal membrane potentials to enhance neuroplasticity. A combination of these treatment strategies may generate synergistic or additive effects, and thus has been more commonly tested in clinical trials, fostering a novel yet promising field of research. We conducted a literature search in four different databases including only randomized clinical trials (RCTs) that tested the combination of MBTs with tDCS. Ten studies (n=461) were included. Combined protocols included meditation/mindfulness (8/10), biofeedback (1/10), and hypnosis (1/10). The RCTs were heterogeneous with regards to population, design, and types of outcomes. Based on the findings of this search, we provide here a content description, methodological and practical insights, and future directions for the field. We hope this review will provide future authors with information to facilitate the development of trials with improved protocols.
Collapse
Affiliation(s)
- Ingrid Rebello-Sanchez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Karen Vasquez-Avila
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Joao Parente
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA,Research Unit for the Generation and Synthesis of Evidence in Health, San Ignacio de Loyola University, Lima, Peru
| | - Paulo S. De Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Paulo E.P. Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Kian Jong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wolnei Caumo
- Department of Surgery, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| |
Collapse
|
7
|
Abedanzadeh R, Alboghebish S, Barati P. The effect of transcranial direct current stimulation of dorsolateral prefrontal cortex on performing a sequential dual task: a randomized experimental study. PSICOLOGIA-REFLEXAO E CRITICA 2021; 34:30. [PMID: 34626255 PMCID: PMC8502187 DOI: 10.1186/s41155-021-00195-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
When it comes to simultaneous processing of two tasks, information processing capacity is usually below par and not desirable. Therefore, this preliminary study aimed to investigate the effect of transcranial direct-current stimulation (tDCS) of dorsolateral prefrontal cortex (DLPFC) on performing dual tasks. Twenty-six students (average age 25.2 ± 2.43 years) were selected and then randomly divided into experimental and sham groups. All of the participants conducted the Stroop effect test in a dual task situation before and after the tDCS. This test included two intervals between the stimuli of 100 and 900 ms. The results of mixed-ANOVA showed that the average second reaction time of the experimental stimulated group was reduced (in both dual tasks with congruent and incongruent stimuli) significantly after the tDCS. Therefore, it can be stated that the tDCS of the DLPFC increases the information processing speed and the capacity of attention and, as a result, decreases the effect of the psychological refractory period.
Collapse
Affiliation(s)
- Rasool Abedanzadeh
- Department of Motor Behaviour, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Saeed Alboghebish
- Department of Motor Behaviour, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parisa Barati
- Department of Motor Behaviour, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
The Current Evidence Levels for Biofeedback and Neurofeedback Interventions in Treating Depression: A Narrative Review. Neural Plast 2021; 2021:8878857. [PMID: 33613671 PMCID: PMC7878101 DOI: 10.1155/2021/8878857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
This article is aimed at showing the current level of evidence for the usage of biofeedback and neurofeedback to treat depression along with a detailed review of the studies in the field and a discussion of rationale for utilizing each protocol. La Vaque et al. criteria endorsed by the Association for Applied Psychophysiology and Biofeedback and International Society for Neuroregulation & Research were accepted as a means of study evaluation. Heart rate variability (HRV) biofeedback was found to be moderately supportable as a treatment of MDD while outcome measure was a subjective questionnaire like Beck Depression Inventory (level 3/5, “probably efficacious”). Electroencephalographic (EEG) neurofeedback protocols, namely, alpha-theta, alpha, and sensorimotor rhythm upregulation, all qualify for level 2/5, “possibly efficacious.” Frontal alpha asymmetry protocol also received limited evidence of effect in depression (level 2/5, “possibly efficacious”). Finally, the two most influential real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocols targeting the amygdala and the frontal cortices both demonstrate some effectiveness, though lack replications (level 2/5, “possibly efficacious”). Thus, neurofeedback specifically targeting depression is moderately supported by existing studies (all fit level 2/5, “possibly efficacious”). The greatest complication preventing certain protocols from reaching higher evidence levels is a relatively high number of uncontrolled studies and an absence of accurate replications arising from the heterogeneity in protocol details, course lengths, measures of improvement, control conditions, and sample characteristics.
Collapse
|