1
|
Nunomura S, Uta D, Kitajima I, Nanri Y, Matsuda K, Ejiri N, Kitajima M, Ikemitsu H, Koga M, Yamamoto S, Honda Y, Takedomi H, Andoh T, Conway SJ, Izuhara K. Periostin activates distinct modules of inflammation and itching downstream of the type 2 inflammation pathway. Cell Rep 2023; 42:111933. [PMID: 36610396 PMCID: PMC11486451 DOI: 10.1016/j.celrep.2022.111933] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing skin disease accompanied by recurrent itching. Although type 2 inflammation is dominant in allergic skin inflammation, it is not fully understood how non-type 2 inflammation co-exists with type 2 inflammation or how type 2 inflammation causes itching. We have recently established the FADS mouse, a mouse model of AD. In FADS mice, either genetic disruption or pharmacological inhibition of periostin, a downstream molecule of type 2 inflammation, inhibits NF-κB activation in keratinocytes, leading to downregulating eczema, epidermal hyperplasia, and infiltration of neutrophils, without regulating the enhanced type 2 inflammation. Moreover, inhibition of periostin blocks spontaneous firing of superficial dorsal horn neurons followed by a decrease in scratching behaviors due to itching. Taken together, periostin links NF-κB-mediated inflammation with type 2 inflammation and promotes itching in allergic skin inflammation, suggesting that periostin is a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Kosuke Matsuda
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoko Ejiri
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Midori Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medical and Pharmaceutical Science, University of Toyama, Toyama 930-0194, Japan
| | - Hitoshi Ikemitsu
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Misaki Koga
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Sayaka Yamamoto
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Hironobu Takedomi
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tsugunobu Andoh
- Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
2
|
Uta D, Inami Y, Fukushima M, Kume T. Light-Touch-Induced Afterdischarge Firing in the Superficial Spinal Dorsal Horn Neurons in Hairless Mice with Irritant Contact Dermatitis. Biol Pharm Bull 2022; 45:1678-1683. [DOI: 10.1248/bpb.b22-00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| | | | | | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
3
|
Inami Y, Fukushima M, Kume T, Uta D. Histamine enhances ATP-induced itching and responsiveness to ATP in keratinocytes. J Pharmacol Sci 2022; 148:255-261. [PMID: 35063141 DOI: 10.1016/j.jphs.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanical stimulation of cultured keratinocytes and a living epidermis increases intracellular calcium ion concentrations ([Ca2+]i) in stimulated cells. This action propagates a Ca2+ wave to neighboring keratinocytes via ATP/P2Y2 receptors. Recent behavioral, pharmacological studies revealed that exogenous ATP induces itching via P2X3 receptors in mice. We previously showed that alloknesis occurs when an external stimulus is applied to the skin with increased epidermal histamine in the absence of spontaneous pruritus. Based on these results, we investigated the effects of histamine at a concentration that does not cause itching on ATP-induced itching. The mean number of scratching events induced by the mixture of ATP and histamine increased by 28% over the sum of that induced by histamine alone or ATP alone. A317491, a P2X3 receptor antagonist, suppressed the mixture-induced scratching more often than the ATP-induced scratching. Next, we examined the ATP-induced [Ca2+]i change before and after histamine stimulation using normal human epidermal keratinocytes. Some cells did not respond to ATP before histamine stimulation but responded to ATP afterward, the phenomenon suppressed by chlorpheniramine maleate. These findings suggest that histamine enhances ATP-induced itching and that a potential mechanism could involve increased responsiveness to ATP in keratinocytes.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Miki Fukushima
- Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences University of Toyama, Toyama, Japan.
| |
Collapse
|