1
|
Alberto Armas D, Hernández García V, Román Castillo Y, Santana Ayala JR, Capdevila Finestres F, Hardisson de la Torre A, Rubio Armendáriz C. Risk Characterization in Patients Using Benzodiazepines While Providing Pharmaceutical Care Dispensing Service. PHARMACY 2024; 12:120. [PMID: 39195849 PMCID: PMC11359597 DOI: 10.3390/pharmacy12040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Tolerance and dependence stand out as the most relevant risks observed during benzodiazepine (BZD) treatments. OBJECTIVES To evaluate the degree of dependence of patients on BZD treatments using the Tyrer test; to define a profile of patients at risk of developing BZD dependence; and to discuss the role of the pharmaceutical care offered by the community pharmacy during dispensing. METHODS Prospective cross-sectional descriptive observational study (August 2020-February 2021) involving 127 patients using BZD. They voluntarily answered a questionnaire during the dispensing pharmaceutical care service. The study was evaluated and codified (code: DAA-CLO-2020-01) by the Spanish Agency for Drugs and Health Products (AEMPS), and statistical analysis was performed with SPSS 25.0. RESULTS 19.05% of patients using BZD were suspected of suffering from BZD tolerance, and 77.88% of all patients were identified as being at a high risk of BZD dependence. The Tyrer test for dependence indicated a mean score of 5.59 out of 13 points. An 18-fold increased risk of developing dependence was detected in the case of coexistence of high anxiety or depression. CONCLUSIONS The community pharmacy, through protocolized care practices and supported by tools such as the Tyrer test, can play a decisive role in the detection, prevention, and resolution of the risks associated with BZD treatments.
Collapse
Affiliation(s)
- Daida Alberto Armas
- Research Group on Environmental Toxicology and Food and Drug Safety, University of La Laguna, Ofra, 38071 Canary Island, Spain; (V.H.G.); (J.R.S.A.); (F.C.F.); (A.H.d.l.T.)
| | - Verónica Hernández García
- Research Group on Environmental Toxicology and Food and Drug Safety, University of La Laguna, Ofra, 38071 Canary Island, Spain; (V.H.G.); (J.R.S.A.); (F.C.F.); (A.H.d.l.T.)
| | - Yanira Román Castillo
- Nursing Area of the Hospital Nuestra Señora de la Candelaria in Santa Cruz de Tenerife, 38010 Canary Islands, Spain;
| | - Juan Ramón Santana Ayala
- Research Group on Environmental Toxicology and Food and Drug Safety, University of La Laguna, Ofra, 38071 Canary Island, Spain; (V.H.G.); (J.R.S.A.); (F.C.F.); (A.H.d.l.T.)
| | - Franc Capdevila Finestres
- Research Group on Environmental Toxicology and Food and Drug Safety, University of La Laguna, Ofra, 38071 Canary Island, Spain; (V.H.G.); (J.R.S.A.); (F.C.F.); (A.H.d.l.T.)
| | - Arturo Hardisson de la Torre
- Research Group on Environmental Toxicology and Food and Drug Safety, University of La Laguna, Ofra, 38071 Canary Island, Spain; (V.H.G.); (J.R.S.A.); (F.C.F.); (A.H.d.l.T.)
| | - Carmen Rubio Armendáriz
- Research Group on Environmental Toxicology and Food and Drug Safety, University of La Laguna, Ofra, 38071 Canary Island, Spain; (V.H.G.); (J.R.S.A.); (F.C.F.); (A.H.d.l.T.)
| |
Collapse
|
2
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Gómez LCG, Medina NB, Blasco SS, Gravielle MC. Diazepam-Induced Down-Regulation of The Gaba a Receptor α1 Subunit, as Mediated by the Activation of L-Type Voltage-Gated Calcium Channel/Ca 2+/Protein Kinase A Signaling Cascade. Neurosci Lett 2023:137358. [PMID: 37356564 DOI: 10.1016/j.neulet.2023.137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Benzodiazepines are among the most prescribed drug class worldwide to treat disorders such as anxiety, insomnia, muscle spasticity, and convulsive disorders, and to induce presurgical sedation. Although benzodiazepines exhibit a high therapeutic index and low toxicity in short-term treatments, prolonged administration induces tolerance to most of their therapeutic actions. The mechanism of this tolerance remains unclear. The central actions of benzodiazepines are mediated by binding to GABAA receptors, which mediate most fast inhibitory transmission in the brain. The majority of GABAA receptors are composed of two α-(1-6), two β-(1-3) and one γ-subunits (1-3). In a previous report, we demonstrated that the prolonged exposure of cerebrocortical neurons to diazepam produces a transcriptional repression of the GABAA receptor α1 subunit gene via a mechanism dependent on the activation of L-type voltage-gated calcium channels (L-VGCCs). The results reported here confirm that the diazepam-induced downregulation of the α1 subunit is contingent upon calcium influx from extracellular space. In addition, this regulatory mechanism involves the activation of protein kinase A (PKA) and is accompanied by the activation of two transcription factors, the cAMP-response element-binding protein (CREB) and the inducible cAMP early repressor (ICER). Together, our results suggest that diazepam's activation of an L-VGCC/Ca2+/PKA/CREB-ICER signaling pathway is responsible for the regulation of GABAA receptors. This elucidation of the intracellular signaling cascade activated by a prolonged benzodiazepine exposure, itself potentially involved in the development of tolerance, may contribute to locating molecular targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Leydi Carolina González Gómez
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Sara Sanz Blasco
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina.
| |
Collapse
|
4
|
Warlick H, Leon L, Patel R, Filoramo S, Knipe R, Joubran E, Levy A, Nguyen H, Rey J. Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model. Mol Biol Rep 2023; 50:1765-1784. [PMID: 36456769 DOI: 10.1007/s11033-022-08110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Current approaches for managing benzodiazepine (BZD) withdrawal symptoms are daunting for clinicians and patients, warranting novel treatment and management strategies. This review discusses the pharmacodynamic properties of BZDs, gabapentinoids (GBPs), endozepines, and novel GABAergic compounds associated with potential clinical benefits for BZD-dependent patients. The objective of this study was to review the complex neuromolecular changes occurring within the GABAergic and glutamatergic systems during the BZD tolerance and withdrawal periods while also examining the mechanism by which GBPs and alternative pharmacological therapies may attenuate withdrawal symptoms. METHODS AND RESULTS An elaborative literature review was conducted using multiple platforms, including the National Center for Biotechnology (NCBI), AccessMedicine, ScienceDirect, pharmacology textbooks, clinical trial data, case reports, and PubChem. Our literature analysis revealed that many distinctive neuroadaptive mechanisms are involved in the GABAergic and glutamatergic systems during BZD tolerance and withdrawal. Based on this data, we hypothesize that GBPs may attenuate the overactive glutamatergic system during the withdrawal phase by an indirect presynaptic glutamatergic mechanism dependent on the α2δ1 subunit expression. CONCLUSIONS GBPs may benefit individuals undergoing BZD withdrawal, given that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor current significantly increases during abrupt BZD withdrawal in animal studies. This may be a conceivable explanation for the effectiveness of GBPs in treating both alcohol withdrawal symptoms and BZD withdrawal symptoms in some recent studies. Finally, natural and synthetic GABAergic compounds with unique pharmacodynamic properties were found to exert potential clinical benefits as BZD substitutes in animal studies, though human studies are lacking.
Collapse
Affiliation(s)
- Halford Warlick
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA.
| | - Lexie Leon
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Rudresh Patel
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Stefanie Filoramo
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ryan Knipe
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ernesto Joubran
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Hoang Nguyen
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Rey
- College of Pharmacy, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
5
|
Dubovsky SL, Marshall D. Benzodiazepines Remain Important Therapeutic Options in Psychiatric Practice. PSYCHOTHERAPY AND PSYCHOSOMATICS 2022; 91:307-334. [PMID: 35504267 DOI: 10.1159/000524400] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/29/2022] [Indexed: 12/27/2022]
Abstract
Benzodiazepines and medications acting on benzodiazepine receptors that do not have a benzodiazepine structure (z-drugs) have been viewed by some experts and regulatory bodies as having limited benefit and significant risks. Data presented in this article support the use of these medications as treatments of choice for acute situational anxiety, chronic anxiety disorders, insomnia, alcohol withdrawal syndromes, and catatonia. They may also be useful adjuncts in the treatment of anxious depression and mania, and for medically ill patients. Tolerance develops to sedation and possibly psychomotor impairment, but not to the anxiolytic effect of benzodiazepines. Sedation can impair cognitive function in some patients, but assertions that benzodiazepines increase the risk of dementia are not supported by recent data. Contrary to popular opinion, benzodiazepines are not frequently misused or conduits to misuse of other substances in patients without substance use disorders who are prescribed these medications for appropriate indications; most benzodiazepine misuse involves medications that are obtained from other people. Benzodiazepines are usually not lethal in overdose except when ingested with other substances, especially alcohol and opioids. Benzodiazepines comprise one of the few classes of psychotropic medication the mechanisms of action of which are clearly delineated, allowing for greater precision in their clinical use. These medications, therefore, belong in the therapeutic armamentarium of the knowledgeable clinician.
Collapse
Affiliation(s)
- Steven L Dubovsky
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Departments of Psychiatry and Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Dori Marshall
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Furukawa T, Nikaido Y, Shimoyama S, Masuyama N, Notoya A, Ueno S. Impaired Cognitive Function and Hippocampal Changes Following Chronic Diazepam Treatment in Middle-Aged Mice. Front Aging Neurosci 2021; 13:777404. [PMID: 34899279 PMCID: PMC8664496 DOI: 10.3389/fnagi.2021.777404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Gamma-aminobutyric acid (GABA) type A receptors are positively allosterically modulated by benzodiazepine binding, leading to a potentiated response to GABA. Diazepam (DZP, a benzodiazepine) is widely prescribed for anxiety, epileptic discharge, and insomnia, and is also used as a muscle relaxant and anti-convulsant. However, some adverse effects - such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning - are elicited by the long-term use of DZP. Clinical studies have reported that chronic DZP treatment increases the risk of dementia in older adults. Furthermore, several studies have reported that chronic DZP administration may affect neuronal activity in the hippocampus, dendritic spine structure, and cognitive performance. However, the effects of chronic DZP administration on cognitive function in aged mice is not yet completely understood. Methods: A behavioral test, immunohistochemical analysis of neurogenic and apoptotic markers, dendritic spine density analysis, and long-term potentiation (LTP) assay of the hippocampal CA1 and CA3 were performed in both young (8 weeks old) and middle-aged (12 months old) mice to investigate the effects of chronic DZP administration on cognitive function. The chronic intraperitoneal administration of DZP was performed by implanting an osmotic minipump. To assess spatial learning and memory ability, the Morris water maze test was performed. Dendritic spines were visualized using Lucifer yellow injection into the soma of hippocampal neurons, and spine density was analyzed. Moreover, the effects of exercise on DZP-induced changes in spine density and LTP in the hippocampus were assessed. Results: Learning performance was impaired by chronic DZP administration in middle-aged mice but not in young mice. LTP was attenuated by DZP administration in the CA1 of young mice and the CA3 of middle-aged mice. The spine density of hippocampal neurons was decreased by chronic DZP administration in the CA1 of both young and middle-aged mice as well as in the CA3 of middle-aged mice. Neither neurogenesis nor apoptosis in the hippocampus was affected by chronic DZP administration. Conclusion: The results of this study suggest that the effects of chronic DZP are different between young and middle-aged mice. The chronic DZP-induced memory retrieval performance impairment in middle-aged mice can likely be attributed to decreased LTP and dendritic spine density in hippocampal neurons in the CA3. Notably, prophylactic exercise suppressed the adverse effects of chronic DZP on LTP and spine maintenance in middle-aged mice.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Frailty Research and Prevention, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nozomu Masuyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayaka Notoya
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
8
|
Tolerance and dependence following chronic alprazolam treatment in rhesus monkeys: Role of GABA A receptor subtypes. Drug Alcohol Depend 2021; 228:108985. [PMID: 34500240 PMCID: PMC8595788 DOI: 10.1016/j.drugalcdep.2021.108985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND To assess GABAA receptor subtypes involved in benzodiazepine tolerance and dependence, we evaluated the ability of subtype-selective and non-selective ligands to substitute for (i.e., produce "cross-tolerance") or precipitate withdrawal during chronic alprazolam treatment. METHODS Four female rhesus monkeys (Macaca mulatta) were implanted with chronic intravenous catheters and administered alprazolam (1.0 mg/kg every 4 h). Following 14+ days of chronic alprazolam, acute administration of selected doses of non-selective and subtype-selective ligands were substituted for, or administered with, alprazolam, followed by quantitative behavioral observations. The ligands included alprazolam and midazolam (positive modulators, non-selective), zolpidem (positive modulator, preferential affinity for α1-containing GABAA receptors), HZ-166 (positive modulator, preferential efficacy at α2- and α3-containing GABAA receptors), and βCCT (antagonist, preferential affinity for α1-containing GABAA receptors). RESULTS Acutely, alprazolam and midazolam both induced observable ataxia along with a mild form of sedation referred to as "rest/sleep posture" at a lower dose (0.1 mg/kg, i.v.), whereas at a higher dose (1.0 mg/kg, i.v.), induced deep sedation and observable ataxia. With chronic alprazolam treatment, observable ataxia and deep sedation were reduced significantly, whereas rest/sleep posture was unchanged or emerged. Zolpidem showed a similar pattern of effects, whereas no behaviors engendered by HZ-166 were changed by chronic alprazolam. Administration of βCCT, but not HZ-166, resulted in significant withdrawal signs. CONCLUSIONS These results are consistent with a role for α1-containing GABAA receptor subtypes in tolerance and dependence observed with chronic alprazolam, although other receptors may be involved in the withdrawal syndrome.
Collapse
|
9
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
10
|
Sanabria E, Cuenca RE, Esteso MÁ, Maldonado M. Benzodiazepines: Their Use either as Essential Medicines or as Toxics Substances. TOXICS 2021; 9:25. [PMID: 33535485 PMCID: PMC7912725 DOI: 10.3390/toxics9020025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
This review highlights the nature, characteristics, properties, pharmacological differences between different types of benzodiazepines, the mechanism of action in the central nervous system, and the degradation of benzodiazepines. In the end, the efforts to reduce the benzodiazepines' adverse effects are shown and a reflection is made on the responsible uses of these medications.
Collapse
Affiliation(s)
- Edilma Sanabria
- Grupo GICRIM, Programa de Investigación Criminal, Universidad Manuela Beltrán, Avenida Circunvalar No. 60-00, 111321 Bogotá, Colombia; (E.S.); (R.E.C.)
| | - Ronald Edgardo Cuenca
- Grupo GICRIM, Programa de Investigación Criminal, Universidad Manuela Beltrán, Avenida Circunvalar No. 60-00, 111321 Bogotá, Colombia; (E.S.); (R.E.C.)
| | - Miguel Ángel Esteso
- Universidad Católica Santa Teresa de Jesús de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain;
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cr. 30 No. 45-03, 111321 Bogotá, Colombia
| |
Collapse
|
11
|
Castellano D, Shepard RD, Lu W. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABA ARs and Their Implications in Receptor Pharmacology. Front Neurosci 2021; 14:616298. [PMID: 33519367 PMCID: PMC7841293 DOI: 10.3389/fnins.2020.616298] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Biggerstaff A, Kivell B, Smith JL, Mian MY, Golani LK, Rashid F, Sharmin D, Knutson DE, Cerne R, Cook JM, Witkin JM. The α2,3-selective potentiators of GABA A receptors, KRM-II-81 and MP-III-80, produce anxiolytic-like effects and block chemotherapy-induced hyperalgesia in mice without tolerance development. Pharmacol Biochem Behav 2020; 196:172996. [PMID: 32668266 DOI: 10.1016/j.pbb.2020.172996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Opiate analgesics are one of the treatment options for severe chronic pain, including late-stage cancer, chronic back pain and other disorders. The recent resurgence in opioid overdose has highlighted the serious need for alternative medicines for pain management. While a role for potentiators of α2/3-containing GABAA receptors in the modulation of pain has been known for several years, advancements in this area required data from selective compounds. KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3- yl)oxazole) and analogs selectively potentiate GABAA receptors containing α2/3 subunits and have recently been shown to attenuate pain behaviors in several acute and chronic pain models in rodents. The present study was designed to ascertain whether KRM-II-81 and the structural analog MP-III-80 (3-ethyl-5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)-1,2,4-oxadiazole) would block chemotherapeutic agent paclitaxel-induced pain in male, C57BL/6 mice. Both compounds significantly inhibited pain behaviors evoked by cold and tactile stimulation in paclitaxel-treated mice as did the neuropathic pain drug gabapentin. Subchronic dosing for 22 days with KRM-II-81 and MP-III-80 demonstrated enduring analgesic efficacy without tolerance development, while the effects of gabapentin showed evidence of tolerance development. KRM-II-81 and MP-III-80 also decreased marble-burying behavior in this mouse strain as did the anxiolytic drug chlordiazepoxide. In contrast to KRM-II-81 and MP-III-80, chlordiazepoxide had motor-impairing effects at anxiolytic-like doses. The data add to the literature documenting that these selective potentiators of α2/3-containing GABAA receptors are effective in a host of animal models used to detect novel analgesic drugs. The anxiolytic-like efficacy of these compounds fits well with the comorbidity of anxiety in patients with chronic pain and cancer.
Collapse
Affiliation(s)
- A Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - B Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - J L Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA
| | - Md Y Mian
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - F Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - D Sharmin
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - D E Knutson
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - R Cerne
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - J M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J M Witkin
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Barker JS, Hines RM. Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders. Int J Mol Sci 2020; 21:ijms21124445. [PMID: 32580510 PMCID: PMC7352578 DOI: 10.3390/ijms21124445] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.
Collapse
|