1
|
Purkartova Z, Krakorova K, Babuska V, Tuma J, Houdek Z, Roy Choudhury N, Kapl S, Kolinko Y, Sucha M, Porras-Garcia E, Kralickova M, Cendelin J. Quantification of Solid Embryonic Cerebellar Graft Volume in a Degenerative Ataxia Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1811-1823. [PMID: 38430389 DOI: 10.1007/s12311-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Substitution of lost neurons by neurotransplantation would be a possible management of advanced degenerative cerebellar ataxias in which insufficient cerebellar reserve remains. In this study, we examined the volume and structure of solid embryonic cerebellar grafts in adult Lurcher mice, a model of olivocerebellar degeneration, and their healthy littermates. Grafts taken from enhanced green fluorescent protein (EGFP)-positive embryos were injected into the cerebellum of host mice. Two or six months later, the brains were examined histologically. The grafts were identified according to the EGFP fluorescence in frozen sections and their volumes were estimated using the Cavalieri principle. For gross histological evaluation, graft-containing slices were processed using Nissl and hematoxylin-eosin staining. Adjustment of the volume estimation approach suggested that it is reasonable to use all sections without sampling, but that calculation of values for up to 20% of lost section using linear interpolation does not constitute substantial error. Mean graft volume was smaller in Lurchers than in healthy mice when examined 6 months after the transplantation. We observed almost no signs of graft destruction. In some cases, compact grafts disorganized the structure of the host's cerebellar cortex. In Lurchers, the grafts had a limited contact with the host's cerebellum. Also, graft size was of greater variability in Lurchers than in healthy mice. The results are in compliance with our previous findings that Lurcher phenotype-associated factors have a negative effect on graft development. These factors can hypothetically include cerebellar morphology, local tissue milieu, or systemic factors such as immune system abnormalities.
Collapse
Affiliation(s)
- Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Kristyna Krakorova
- Department of Neurology, Faculty Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Houdek
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Nilpawan Roy Choudhury
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Stepan Kapl
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martina Sucha
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Elena Porras-Garcia
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, Seville, Spain
| | - Milena Kralickova
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
2
|
Lalonde R, Hernandez M, Strazielle C. BDNF and Cerebellar Ataxia. Curr Drug Res Rev 2024; 16:300-307. [PMID: 37609676 DOI: 10.2174/2589977515666230811093021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 08/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been proposed as a treatment for neurodegeneration, including diseases of the cerebellum, where BDNF levels or those of its main receptor, TrkB, are often diminished relative to controls, thereby serving as replacement therapy. Experimental evidence indicates that BDNF signaling countered cerebellar degeneration, sensorimotor deficits, or both, in transgenic ATXN1 mice mutated for ataxin-1, Cacna1a knock-in mice mutated for ataxin-6, mice injected with lentivectors encoding RNA sequences against human FXN into the cerebellar cortex, Kcnj6Wv (Weaver) mutant mice with granule cell degeneration, and rats with olivocerebellar transaction, similar to a BDNF-overexpressing transgenic line interbred with Cacng2stg mutant mice. In this regard, this study discusses whether BDNF is effective in cerebellar pathologies where BDNF levels are normal and whether it is effective in cases with combined cerebellar and basal ganglia damage.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
| | - Magali Hernandez
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
- CHRU Nancy, allée du Morvan, 54500 Vandoeuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
- CHRU Nancy, allée du Morvan, 54500 Vandoeuvre-les-Nancy, France
| |
Collapse
|
3
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
4
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
5
|
Tichanek F. Psychiatric-Like Impairments in Mouse Models of Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2023; 22:14-25. [PMID: 35000108 DOI: 10.1007/s12311-022-01367-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Many patients with spinocerebellar ataxia (SCA) suffer from diverse neuropsychiatric issues, including memory impairments, apathy, depression, or anxiety. These neuropsychiatric aspects contribute per se to the reduced quality of life and worse prognosis. However, the extent to which SCA-related neuropathology directly contributes to these issues remains largely unclear. Behavioral profiling of various SCA mouse models can bring new insight into this question. This paper aims to synthesize recent findings from behavioral studies of SCA patients and mouse models. The role of SCA neuropathology for shaping psychiatric-like impairments may be exemplified in mouse models of SCA1. These mice evince robust cognitive impairments which are shaped by both the cerebellar as well as out-of-cerebellar pathology. Although emotional-related alternations are also present, they seem to be less robust and more affected by the specific distribution and character of the neuropathology. For example, cerebellar-specific pathology seems to provoke behavioral disinhibition, leading to seemingly decreased anxiety, whereas complex SCA1 neuropathology induces anxiety-like phenotype. In SCA1 mice with complex neuropathology, some of the psychiatric-like impairments are present even before marked cerebellar degeneration and ataxia and correlate with hippocampal atrophy. Similarly, complete or partial deletion of the implicated gene (Atxn1) leads to cognitive dysfunction and anxiety-like behavior, respectively, without apparent ataxia and cerebellar degeneration. Altogether, these findings collectively suggest that the neuropsychiatric issues have a biological basis partially independent of the cerebellum. As some neuropsychiatric issues may stem from weakening the function of the implicated gene, therapeutic reduction of its expression by molecular approaches may not necessarily mitigate the neuropsychiatric issues.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
6
|
Cook AA, Jayabal S, Sheng J, Fields E, Leung TCS, Quilez S, McNicholas E, Lau L, Huang S, Watt AJ. Activation of TrkB-Akt signaling rescues deficits in a mouse model of SCA6. SCIENCE ADVANCES 2022; 8:eabh3260. [PMID: 36112675 PMCID: PMC9481119 DOI: 10.1126/sciadv.abh3260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2022] [Indexed: 06/01/2023]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease resulting in motor coordination deficits and cerebellar pathology. Expression of brain-derived neurotrophic factor (BDNF) is reduced in postmortem tissue from SCA6 patients. Here, we show that levels of cerebellar BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are reduced at an early disease stage in a mouse model of SCA6 (SCA684Q/84Q). One month of exercise elevated cerebellar BDNF expression and improved ataxia and cerebellar Purkinje cell firing rate deficits. A TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), likewise improved motor coordination and Purkinje cell firing rate and elevated downstream Akt signaling. Prolonged 7,8-DHF administration persistently improved ataxia when treatment commenced near disease onset but was ineffective when treatment was started late. These data suggest that 7,8-DHF, which is orally bioavailable and crosses the blood-brain barrier, is a promising therapeutic for SCA6 and argue for the importance of early intervention for SCA6.
Collapse
Affiliation(s)
- Anna A. Cook
- Biology Department, McGill University, Montreal, QC, Canada
| | - Sriram Jayabal
- Biology Department, McGill University, Montreal, QC, Canada
- Integrated Neuroscience Program, McGill University, Montreal, QC, Canada
- Department of Neurobiology, Stanford School of Medicine, Stanford, CA, USA
| | - Jacky Sheng
- Biology Department, McGill University, Montreal, QC, Canada
| | - Eviatar Fields
- Biology Department, McGill University, Montreal, QC, Canada
- Integrated Neuroscience Program, McGill University, Montreal, QC, Canada
| | | | - Sabrina Quilez
- Biology Department, McGill University, Montreal, QC, Canada
| | | | - Lois Lau
- Biology Department, McGill University, Montreal, QC, Canada
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Department of Education, Innovation and Technology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alanna J. Watt
- Biology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Dou SH, Cui Y, Huang SM, Zhang B. The Role of Brain-Derived Neurotrophic Factor Signaling in Central Nervous System Disease Pathogenesis. Front Hum Neurosci 2022; 16:924155. [PMID: 35814950 PMCID: PMC9263365 DOI: 10.3389/fnhum.2022.924155] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have found abnormal levels of brain-derived neurotrophic factor (BDNF) in a variety of central nervous system (CNS) diseases (e.g., stroke, depression, anxiety, Alzheimer's disease, and Parkinson's disease). This suggests that BDNF may be involved in the pathogenesis of these diseases. Moreover, regulating BDNF signaling may represent a potential treatment for such diseases. With reference to recent research papers in related fields, this article reviews the production and regulation of BDNF in CNS and the role of BDNF signaling disorders in these diseases. A brief introduction of the clinical application status of BDNF is also provided.
Collapse
Affiliation(s)
- Shu-Hui Dou
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, College of Agriculture, Hainan University, Haikou, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Sheeler C, Rosa JG, Borgenheimer E, Mellesmoen A, Rainwater O, Cvetanovic M. Post-symptomatic Delivery of Brain-Derived Neurotrophic Factor (BDNF) Ameliorates Spinocerebellar Ataxia Type 1 (SCA1) Pathogenesis. THE CEREBELLUM 2021; 20:420-429. [PMID: 33394333 DOI: 10.1007/s12311-020-01226-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin1 (ATXN1) gene. SCA1 is characterized by motor deficits, cerebellar neurodegeneration, and gliosis and gene expression changes. Expression of brain-derived neurotrophic factor (BDNF), growth factor important for the survival and function of cerebellar neurons, is decreased in ATXN1[82Q] mice, the Purkinje neuron specific transgenic mouse model of SCA1. As this decrease in BDNF expression may contribute to cerebellar neurodegeneration, we tested whether delivery of extrinsic human BDNF via osmotic ALZET pumps has a beneficial effect on disease severity in this mouse model of SCA1. Additionally, to test the effects of BDNF on established and progressing cerebellar pathogenesis and motor deficits, we delivered BDNF post-symptomatically. We have found that post-symptomatic delivery of extrinsic BDNF ameliorated motor deficits and cerebellar pathology (i.e., dendritic atrophy of Purkinje cells, and astrogliosis) indicating therapeutic potential of BDNF even after the onset of symptoms in SCA1. However, BDNF did not alter Purkinje cell gene expression changes indicating that certain aspects of disease pathogenesis cannot be ameliorated/slowed down with BDNF and that combinational therapies may be needed.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Aaron Mellesmoen
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Orion Rainwater
- Department of Lab Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Salomova M, Tichanek F, Jelinkova D, Cendelin J. Forced activity and environmental enrichment mildly improve manifestation of rapid cerebellar degeneration in mice. Behav Brain Res 2020; 401:113060. [PMID: 33316321 DOI: 10.1016/j.bbr.2020.113060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022]
Abstract
Exercise therapy represents an important tool for the treatment of many neurological diseases, including cerebellar degenerations. In mouse models, exercise may decelerate the progression of gradual cerebellar degeneration via potent activation of neuroprotective pathways. However, whether exercise could also improve the condition in mice with already heavily damaged cerebella remains an open question. Here we aimed to explore this possibility, employing a mouse model with dramatic early-onset cerebellar degeneration, the Lurcher mice. The potential of forced physical activity and environmental enrichment (with the possibility of voluntary running) for improvement of behaviour and neuroplasticity was evaluated by a series of behavioural tests, measuring BDNF levels and using stereological histology techniques. Using advanced statistical analysis, we showed that while forced physical activity improved motor learning by ∼26 % in Lurcher mice and boosted BDNF levels in the diseased cerebellum by 57 %, an enriched environment partially alleviated some behavioural deficits related to behavioural disinhibition. Specifically, Lurcher mice exposed to the enriched environment evinced reduced open arm exploration in elevated plus maze test by 18 % and increased immobility almost 9-fold in the forced swim test. However, we must conclude that the overall beneficial effects were very mild and much less clear, compared to previously demonstrated effects in slowly-progressing cerebellar degenerations.
Collapse
Affiliation(s)
- Martina Salomova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Dana Jelinkova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| |
Collapse
|
10
|
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, Petrankova Z, Tuma Z, Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep 2020; 10:5418. [PMID: 32214165 PMCID: PMC7096488 DOI: 10.1038/s41598-020-62308-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia 1 (SCA1) is a devastating neurodegenerative disease associated with cerebellar degeneration and motor deficits. However, many patients also exhibit neuropsychiatric impairments such as depression and apathy; nevertheless, the existence of a causal link between the psychiatric symptoms and SCA1 neuropathology remains controversial. This study aimed to explore behavioral deficits in a knock-in mouse SCA1 (SCA1154Q/2Q) model and to identify the underlying neuropathology. We found that the SCA1 mice exhibit previously undescribed behavioral impairments such as increased anxiety- and depressive-like behavior and reduced prepulse inhibition and cognitive flexibility. Surprisingly, non-motor deficits characterize the early SCA1 stage in mice better than does ataxia. Moreover, the SCA1 mice exhibit significant hippocampal atrophy with decreased plasticity-related markers and markedly impaired neurogenesis. Interestingly, the hippocampal atrophy commences earlier than the cerebellar degeneration and directly reflects the individual severity of some of the behavioral deficits. Finally, mitochondrial respirometry suggests profound mitochondrial dysfunction in the hippocampus, but not in the cerebellum of the young SCA1 mice. These findings imply the essential role of hippocampal impairments, associated with profound mitochondrial dysfunction, in SCA1 behavioral deficits. Moreover, they underline the view of SCA1 as a complex neurodegenerative disease and suggest new avenues in the search for novel SCA1 therapies.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia. .,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.
| | - Martina Salomova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Jedlicka
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Kuncova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tereza Macanova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zuzana Petrankova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zdenek Tuma
- Laboratory of Proteomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|