1
|
Cui YY, Xu ZQ, Qin XY, Hou HJ, Zhang J, Xue JJ. Electroacupuncture alleviates paradoxical sleep deprivation-induced postoperative hyperalgesia via a7nAChR mediated BDNF/TrkB-KCC2 signaling pathway in the spinal cord. IBRO Neurosci Rep 2024; 17:389-397. [PMID: 39559484 PMCID: PMC11570470 DOI: 10.1016/j.ibneur.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Perioperative Paradoxical sleep deprivation (PSD) is associated with postoperative hyperalgesia. However, the clinical therapeutic strategies for PSD-induced postoperative hyperalgesia are limited. Electroacupuncture (EA) has been used for attenuating many types of pain, including neuropathic pain and inflammatory pain, but its effect on PSD-induced postoperative hyperalgesia is still unclear, and its analgesia mechanism should be further explored. In this study, we designed to investigate the possible mechanism of PSD-induced postoperative hyperalgesia and the effect of EA on PSD-induced postoperative hyperalgesia, and whether the mechanism is related to the BDNF/TrkB signaling pathway mediated by α7nAChR in the spinal cord. The paw withdrawal thermal latency (PWTL) and paw withdrawal mechanical threshold (PWMT) of rats were used to detect PSD-induced hyperalgesia. The expression of α7nAChR, BDNF, TrkB and KCC2 in the spinal cord were evaluated by Western blot and immunofluorescence. The results showed that preoperative 24 h PSD significantly decreased the PWTL and PWMT. The expression of α7nAChR and KCC2 significantly downregulated in the spinal cord of PSD-induced postoperative hyperalgesia rats, the opposite was observed for BDNF and TrkB expression. Moreover, intrathecal injection of alpha-bungarotoxin (α-BGT), a selective antagonist for α7nAChR, not only aggravated the pain hypersensitivity, but also demonstrated a further decrease of α7nAChR and KCC2 expression and a further increase of BDNF and TrkB expression. EA stimulation increased the PWTL and PWMT values of PSD-induced postoperative hyperalgesia rats, significantly upregulated α7nAChR and KCC2 expression, and significantly downregulated BDNF and TrkB expression. Moreover, intrathecal injection of α-BGT suppressed the analgesic effect of EA, inhibited the enhancement of α7nAChR and KCC2 expression and the reduction of BDNF and TrkB expression induced by EA. In conclusion, our study indicated that 24 h PSD can cause postoperative hyperalgesia, and the mechanism may be related to the disorder of α7nAChR mediated BDNF/TrkB-KCC2 signaling pathway. EA can alleviate postoperative hyperalgesia induced by PSD, which may be related to its effect in activating α7nAChR, inhibiting the expression of BDNF/TrkB, and up-regulating the expression of KCC2 in the spinal cord.
Collapse
Affiliation(s)
- Yi-yang Cui
- Department of Anesthesiology, Zhongshan Hospital of Fudan University, China
| | - Zi-qing Xu
- Department of Anesthesiology, Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
- Gansu Clinical Research Center of Integrative Anesthesiology, Lanzhou 730050, China
| | - Xiao-yu Qin
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huai-jing Hou
- Department of Anesthesiology, Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
- Gansu Clinical Research Center of Integrative Anesthesiology, Lanzhou 730050, China
| | - Jie Zhang
- Department of Anesthesiology, Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
- Gansu Clinical Research Center of Integrative Anesthesiology, Lanzhou 730050, China
| | - Jian-jun Xue
- Department of Anesthesiology, Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
- Gansu Clinical Research Center of Integrative Anesthesiology, Lanzhou 730050, China
- Evidence-based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
2
|
Lei M, Liu Q, Nie J, Huang R, Mei Y, Pan D, Chen Y, Liu W. Impact and Mechanisms of Action of BDNF on Neurological Disorders, Cancer, and Cardiovascular Diseases. CNS Neurosci Ther 2024; 30:e70138. [PMID: 39648800 PMCID: PMC11626086 DOI: 10.1111/cns.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), which is primarily expressed in the brain and nervous tissues, is the most abundant neurotrophic factor in the adult brain. BDNF serves not only as a major neurotrophic signaling agent in the human body but also as a crucial neuromodulator. Widely distributed throughout the central nervous system (CNS), both BDNF and its receptors play a significant role in promoting neuronal survival and growth, thereby exerting neuroprotective effects. It is further considered as a guiding medium for the functionality and structural plasticity of the CNS. Increasingly, research has indicated the critical importance of BDNF in understanding human diseases. Activation of intracellular signaling pathways such as the mitogen-activated protein kinase pathway, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, and phospholipase C γ pathway by BDNF can all potentially enhance the growth, survival, proliferation, and migration of cancer cells, influencing cancer development. The loss of BDNF and its receptor, tropomyosin receptor kinase B, in signaling pathways is also associated with increased susceptibility to brain and heart diseases. Additionally, reduced BDNF levels in both the central and peripheral systems have been closely linked to various neurogenic diseases, including neuropathic pain and psychiatric disorders. As such, this review summarizes and analyzes the impact of BDNF on neurogenic diseases, cancer, and cardiovascular diseases. This study thereby aimed to elucidate its effects on these diseases to provide new insights and approaches for their treatment.
Collapse
Affiliation(s)
- Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| | - Qiwen Liu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| | - Jinxia Nie
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| | - Rongyi Huang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| | - Yan Mei
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| | - Dan Pan
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| | - Yong Chen
- Xianning Central HospitalThe First Affiliated Hospital of Hubei University of Science and TechnologyXianningHubeiChina
| | - Wu Liu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical CollegeHubei University of Science and TechnologyXianningHubeiChina
| |
Collapse
|
3
|
Zhang Z, Hou Z, Han M, Guo P, Chen K, Qin J, Tang Y, Yang F. Amygdala-Targeted Relief of Neuropathic Pain: Efficacy of Repetitive Transcranial Magnetic Stimulation in NLRP3 Pathway Suppression. Mol Neurobiol 2024; 61:8904-8920. [PMID: 38573415 PMCID: PMC11496354 DOI: 10.1007/s12035-024-04087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
This study investigates the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as a nonpharmacological approach to treating neuropathic pain (NP), a major challenge in clinical research. Conducted on male Sprague-Dawley rats with NP induced through chronic constriction injury of the sciatic nerve, the research assessed pain behaviors and the impact of rTMS on molecular interactions within the amygdala. Through a comprehensive analysis involving Mechanical Withdrawal Threshold (MWT), Thermal Withdrawal Latency (TWL), RNA transcriptome sequencing, RT-qPCR, Western blotting, immunofluorescence staining, and Co-Immunoprecipitation (Co-IP), the study focused on the expression and interaction of integrin αvβ3 and its receptor P2X7R. Findings reveal that rTMS significantly influences the expression of integrin αvβ3 in NP models, suggesting an inhibition of the NP-associated NLRP3 inflammatory pathway through the disruption of integrin αvβ3-P2X7R interactions. These outcomes highlight the potential of rTMS in alleviating NP by targeting molecular interactions within the amygdala, offering a promising therapeutic avenue for managing NP.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Anesthesiology, Hunan University of Medicine General Hospital (The First People's Hospital of Huaihua), No. 144, South Jinxi Road, Huaihua, 418000, Hunan Province, P. R. China
| | - Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China
| | - Mingming Han
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, P. R. China
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peng Guo
- Department of Anesthesiology, Hunan University of Medicine General Hospital (The First People's Hospital of Huaihua), No. 144, South Jinxi Road, Huaihua, 418000, Hunan Province, P. R. China
| | - Kemin Chen
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China
| | - Jie Qin
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China
| | - Yuanzhang Tang
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street Beijing, Beijing, 100053, P. R. China.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Fengrui Yang
- Department of Anesthesiology, Hunan University of Medicine General Hospital (The First People's Hospital of Huaihua), No. 144, South Jinxi Road, Huaihua, 418000, Hunan Province, P. R. China.
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P. R. China.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Kamel DM, Hassan M, Elsawy NA, Hashad D, Fayed AA, Elhabashy AM, Abdel-Fattah YH. Serum brain-derived neurotrophic factor level in patients with disc induced lumbosacral radiculopathy: Relation to pain severity and functional disability. J Clin Neurosci 2024; 128:110773. [PMID: 39137713 DOI: 10.1016/j.jocn.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Pain is the major cause of disability in disc induced lumbosacral radiculopathy (LSR) and is related to neurotrophins mainly brain derived neurotrophic factor (BDNF). However, to our knowledge evaluating serum BDNF in disc induced LSR has not been reported before. This study was done to investigate serum BDNF in LSR patients and its relation to pain severity and functional disability. METHODS This case-control study included 40 disc induced LSR patients and 40 age and sex matched healthy subjects. All patients were subjected to neurological examination, electrophysiological evaluation, pain severity assessment using numerical rating scale (NRS) and functional disability assessment using Modified Oswestry Low Back Pain Disability Index (ODI) and Maine-Seattle Back Questionnaire (MSBQ). According to Douleur neuropathique 4 (DN4) questionnaire, patients were divided into those with neuropathic pain and those with non-neuropathic pain. Serum BDNF was measured by enzyme-linked immunosorbent assay in all participants. RESULTS Serum BDNF was significantly higher in LSR patients than in healthy controls (U=272.5, P<0.001). Moreover, serum BDNF was significantly higher in those with neuropathic pain compared to those with non-neuropathic pain (U=35, P=0.03). Serum BDNF had a significant positive correlation with NRS score among those with acute pain (rs=0.537, P=0.026), however there was no significant correlation among those with chronic pain. Furthermore, BDNF had no significant correlation with modified ODI and MSBQ. CONCLUSION Increased serum BDNF may be associated with neuropathic pain and acute pain severity in disc induced LSR. However, it may not be related to chronic pain severity or functional disability.
Collapse
Affiliation(s)
- Dina Mansour Kamel
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Marwa Hassan
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Noha A Elsawy
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| | - Doaa Hashad
- Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | | | | | - Yousra Hisham Abdel-Fattah
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
5
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Chen W, Qu Y, Liu Y, Zhang G, Sharhan HM, Zhang X, Zhang K, Cao B. Effects of fasudil on glial cell activation induced by tooth movement. Prog Orthod 2024; 25:33. [PMID: 39034361 PMCID: PMC11265063 DOI: 10.1186/s40510-024-00518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Orthodontic pain affects the physical and mental health of patients. The spinal trigeminal subnucleus caudalis (SPVC) contributes to the transmission of pain information and serves as a relay station for integrating orofacial damage information. Recently, glial cells have been found to be crucial for both acute and maintenance phases of pain. It has also been demonstrated that rho kinase (ROCK) inhibitors can manage different pain models by inhibiting glial cell activation. Here, we hypothesized that orthodontic pain is related to glial cells in the SPVC, and Fasudil, a representative rho/rock kinase inhibitor, can relieve orthodontic pain by regulating the function of glial cells and the related inflammatory factors. In this study, we constructed a rat model of tooth movement pain and used immunofluorescence staining to evaluate the activation of microglia and astrocytes. Quantitative real-time PCR was used to detect the release of related cytokines and the expression of pain-related genes in the SPVC. Simultaneously, we investigated the effect of Fasudil on the aforementioned indicators. RESULTS In the SPVC, the expression of c-Fos peaked on day 1 along with the expression of OX42 (related to microglial activation), CD16 (a pro-inflammatory factor), and CD206 (an anti-inflammatory factor) on day 3 after tooth movement, followed by a gradual decrease. GFAP-staining showed that the number of activated astrocytes was the highest on day 5 and that cell morphology became complex. After Fasudil treatment, the expression of these proteins showed a downward trend. The mRNA levels of pro-inflammatory factors (IL-1β and TNF-α) peaked on day 3, and the mRNA expression of the anti-inflammatory factor TGF-β was the lowest 3 days after tooth movement. Fasudil inhibited the mRNA expression of pain-related genes encoding CSF-1, t-PA, CTSS, and BDNF. CONCLUSION This study shows that tooth movement can cause the activation of glial cells in SPVC, and ROCK inhibitor Fasudil can inhibit the activation of glial cells and reduce the expression of the related inflammatory factors. This study presents for the first time the potential application of Fasudil in othodontic pain.
Collapse
Affiliation(s)
- Wenyuanfeng Chen
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Yuan Qu
- International Campus, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Yining Liu
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Guorui Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Hasan M Sharhan
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Xinzhu Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Kunwu Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Baocheng Cao
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China.
| |
Collapse
|
7
|
Singh AA, Yadav D, Khan F, Song M. Indole-3-Carbinol and Its Derivatives as Neuroprotective Modulators. Brain Sci 2024; 14:674. [PMID: 39061415 PMCID: PMC11274471 DOI: 10.3390/brainsci14070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF's mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| |
Collapse
|
8
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
9
|
Zhao Z, Zheng X, Wang H, Guo J, Liu R, Yang G, Huo M. LncRNA-PCat19 acts as a ceRNA of miR-378a-3p to facilitate microglia activation and accelerate chronic neuropathic pain in rats by promoting KDM3A-mediated BDNF demethylation. Mol Immunol 2024; 170:88-98. [PMID: 38643689 DOI: 10.1016/j.molimm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
The pathogenesis of neuropathic pain (NP) is complex, and there are various pathological processes. Previous studies have suggested that lncRNA PCAT19 is abnormally expressed in NP conduction and affects the occurrence and development of pain. The aim of this study is to analyze the role and mechanism of PCAT19 in NP induced by chronic compressive nerve injury (CCI) in mice. In this study, C57BL/6 mice were applied to establish the CCI model. sh-PCAT19 was intrathecally injected once a day for 5 consecutive days from the second day after surgery. We discovered that PCat19 level was gradually up-regulated with the passage of modeling time. Downregulation of Iba-1-positive expression, M1/M2 ratio of microglia, and pro-inflammatory factors in the spinal cords of CCI-mice after PCat19 knock-downed was observed. Mechanically, the expression of miR-378a-3p was negatively correlated with KDM3A and PCat19. Deletion of KDM3A prevented H3K9me2 demethylation of BDNF promoter and suppressed BDNF expression. Further, KDM3A promotes CCI-induced neuroinflammation and microglia activation by mediating Brain-derived neurotrophic factor (BDNF) demethylation. Together, the results suggest that PCat19 may be involved in the development of NP and that PCat19 shRNA injection can attenuate microglia-induced neuroinflammation by blocking KDM3A-mediated demethylation of BDNF and BDNF release.
Collapse
Affiliation(s)
- Ziyu Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Xingxing Zheng
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Jiao Guo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Ruixia Liu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Guang Yang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Miao Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
10
|
Poongodi R, Yang TH, Huang YH, Yang KD, Chen HZ, Chu TY, Wang TY, Lin HC, Cheng JK. Stem cell exosome-loaded Gelfoam improves locomotor dysfunction and neuropathic pain in a rat model of spinal cord injury. Stem Cell Res Ther 2024; 15:143. [PMID: 38764049 PMCID: PMC11103960 DOI: 10.1186/s13287-024-03758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Kuender D Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, 25245, Taiwan.
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Hong-Zhao Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tsuei-Yu Chu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Tao-Yeuan Wang
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
- Department of Pathology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS 2 B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan.
| |
Collapse
|
11
|
Ismail CAN, Zakaria R, Azman KF, Shafin N, Bakar NAA. Brain-derived neurotrophic factor (BDNF) in chronic pain research: A decade of bibliometric analysis and network visualization. AIMS Neurosci 2024; 11:1-24. [PMID: 38617040 PMCID: PMC11007409 DOI: 10.3934/neuroscience.2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Chronic pain research, with a specific focus on the brain-derived neurotrophic factor (BDNF), has made impressive progress in the past decade, as evident in the improved research quality and increased publications. To better understand this evolving landscape, a quantitative approach is needed. The main aim of this study is to identify the hotspots and trends of BDNF in chronic pain research. We screened relevant publications from 2013 to 2022 in the Scopus database using specific search subject terms. A total of 401 documents were selected for further analysis. We utilized several tools, including Microsoft Excel, Harzing's Publish or Perish, and VOSViewer, to perform a frequency analysis, citation metrics, and visualization, respectively. Key indicators that were examined included publication growth, keyword analyses, topmost influential articles and journals, networking by countries and co-citation of cited references. Notably, there was a persistent publication growth between 2015 and 2021. "Neuropathic pain" emerged as a prominent keyword in 2018, alongside "microglia" and "depression". The journal Pain® was the most impactful journal that published BDNF and chronic pain research, while the most influential publications came from open-access reviews and original articles. China was the leading contributor, followed by the United States (US), and maintained a leadership position in the total number of publications and collaborations. In conclusion, this study provides a comprehensive list of the most influential publications on BDNF in chronic pain research, thereby aiding in the understanding of academic concerns, research hotspots, and global trends in this specialized field.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Rahimah Zakaria
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Khairunnuur Fairuz Azman
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Nazlahshaniza Shafin
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Noor Azlina Abu Bakar
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Jalan Mahmud, 20400 Kuala Terengganu, Terengganu, MALAYSIA
| |
Collapse
|
12
|
Xiong HY, Hendrix J, Schabrun S, Wyns A, Campenhout JV, Nijs J, Polli A. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules 2024; 14:71. [PMID: 38254671 PMCID: PMC10813479 DOI: 10.3390/biom14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
13
|
Phan TT, Jayathilake NJ, Lee KP, Park JM. BDNF/TrkB Signaling Inhibition Suppresses Astrogliosis and Alleviates Mechanical Allodynia in a Partial Crush Injury Model. Exp Neurobiol 2023; 32:343-353. [PMID: 37927132 PMCID: PMC10628862 DOI: 10.5607/en23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Neuropathic pain presents a formidable clinical challenge due to its persistent nature and limited responsiveness to conventional analgesic treatments. While significant progress has been made in understanding the role of spinal astrocytes in neuropathic pain, their contribution and functional changes following a partial crush injury (PCI) remain unexplored. In this study, we investigated structural and functional changes in spinal astrocytes during chronic neuropathic pain, employing a partial crush injury model. This model allowes us to replicate the transition from initial nociceptive responses to persistent pain, highlighting the relevance of astrocytes in pain maintenance and sensitization. Through the examination of mechanical allodynia, a painful sensation in response to innocuous stimuli, and the correlation with increased levels of brain-derived neurotrophic factor (BDNF) along with reactive astrocytes, we identified a potential mechanistic link between astrocytic activity and BDNF signaling. Ultimately, our research provides evidence that inhibiting astrocyte activation through a BDNF/TrkB inhibitor alleviates mechanical allodynia, underscoring the therapeutic potential of targeting glial BDNF-related pathways for pain management. These findings offer critical insights into the cellular and molecular dynamics of neuropathic pain, paving the way for innovative and targeted treatment strategies for this challenging condition.
Collapse
Affiliation(s)
- Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34126, Korea
| | - Nishani Jayanika Jayathilake
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34126, Korea
| |
Collapse
|
14
|
He W, Wang Y, Zhang Y, Zhang Y, Zhou J. The status of knowledge on migraines: The role of microglia. J Neuroimmunol 2023; 381:578118. [PMID: 37295033 DOI: 10.1016/j.jneuroim.2023.578118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/11/2023]
Abstract
Migraines are a considerable social problem and economic burden worldwide. Current acute treatments are based on inhibiting meningeal neurogenic inflammation which has poor results in some patients, whereas the site of action of prophylactic medicines are unknown; therefore, exploring new treatment mechanisms and methods is increasingly needed. Recent evidence suggests that microglia and microglia-mediated neuroinflammation are important in migraine pathogenesis. In the cortical spreading depression (CSD) migraine model, microglia were activated after multiple CSD stimulations, suggesting that microglial activation may be associated with recurrent attacks of migraine with aura. In the nitroglycerin-induced chronic migraine model, the microglial response to extracellular stimuli leads to the activation of surface purine receptors P2X4、P2X7、P2Y12, which mediate signal transduction through intracellular signalling cascades, such as the BDNF/TrkB, NLRP3/IL-1β and RhoA/ROCK signalling pathways, and release inflammatory mediators and cytokines that enhance pain by increasing the excitability of nearby neurons. Inhibition of the expression or function of these microglial receptors and pathways inhibits the abnormal excitability of TNC (trigeminal nucleus caudalis) neurons and intracranial as well as extracranial hyperalgesia in migraine animal models. These findings suggest that microglia may be central in migraine recurrent attacks and a potential target for the treatment of chronic headaches.
Collapse
Affiliation(s)
- Wei He
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinan Zhang
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Pan J, Zhao Y, Sang R, Yang R, Bao J, Wu Y, Fei Y, Wu J, Chen G. Huntington-associated protein 1 inhibition contributes to neuropathic pain by suppressing Cav1.2 activity and attenuating inflammation. Pain 2023; 164:e286-e302. [PMID: 36508175 DOI: 10.1097/j.pain.0000000000002837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although pain dysfunction is increasingly observed in Huntington disease, the underlying mechanisms still unknown. As a crucial Huntington-associated protein, Huntington-associated protein 1 (HAP1) is enriched in normal spinal dorsal horn and dorsal root ganglia (DRG) which are regarded as "primary sensory center," indicating its potential functions in pain process. Here, we discovered that HAP1 level was greatly increased in the dorsal horn and DRG under acute and chronic pain conditions. Lack of HAP1 obviously suppressed mechanical allodynia and hyperalgesia in spared nerve injury (SNI)-induced and chronic constriction injury-induced pain. Its deficiency also greatly inhibited the excitability of nociceptive neurons. Interestingly, we found that suppressing HAP1 level diminished the membrane expression of the L-type calcium channel (Cav1.2), which can regulate Ca 2+ influx and then influence brain-derived neurotrophic factor (BDNF) synthesis and release. Furthermore, SNI-induced activation of astrocytes and microglia notably decreased in HAP1-deficient mice. These results indicate that HAP1 deficiency might attenuate pain responses. Collectively, our results suggest that HAP1 in dorsal horn and DRG neurons regulates Cav1.2 surface expression, which in turn reduces neuronal excitability, BDNF secretion, and inflammatory responses and ultimately influences neuropathic pain progression.
Collapse
Affiliation(s)
- JingYing Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - YaYu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Sang
- Department of Physiology, Medical School of Nantong University, Nantong, China
| | - RiYun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JingYin Bao
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - YongJiang Wu
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
16
|
Tonyan S, Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Vavilova T, Vasilieva E, Makhanova A, Nikolaeva A, Bukkieva T, Combs S, Shevtsov M. Neurotrophin-3 (NT-3) as a Potential Biomarker of the Peripheral Nervous System Damage Following Breast Cancer Treatment. PATHOPHYSIOLOGY 2023; 30:110-122. [PMID: 37092524 PMCID: PMC10123681 DOI: 10.3390/pathophysiology30020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Damage to the peripheral nervous system (PNS) is a common complication of breast cancer (BC) treatment, with 60 to 80% of breast cancer survivors experiencing symptoms of PNS damage. In the current study, the levels of brain-derived neurotrophic factor (BDNF), galectin-3 (Gal-3), and neurotrophin-3 (NT-3) were measured in the blood serum of BC patients by ELISA as potential biomarkers that might indicate the PNS damage. Sixty-seven patients were enrolled in this multi-center trial and compared to the aged-matched healthy female volunteers (control group) (n = 25). Intergroup comparison of biomarker levels (i.e., Gal-3 and BDNF) did not show significant differences in any of the studied subgroups. However, intriguingly, NT-3 levels were significantly higher in BC patients as compared to healthy volunteers, constituting 14.85 [10.3; 18.0] and 5.74 [4.56; 13.7] pg/mL, respectively (p < 0.001). In conclusion, NT-3 might be employed as a potential biomarker in BC patients with clinical manifestations of PNS damage. However, further studies to validate its correlation to the degree of peripheral nervous system lesions are of high value.
Collapse
Affiliation(s)
- Samvel Tonyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Aleksandra Nikolaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Stephanie Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
17
|
Thakkar B, Acevedo EO. BDNF as a biomarker for neuropathic pain: Consideration of mechanisms of action and associated measurement challenges. Brain Behav 2023; 13:e2903. [PMID: 36722793 PMCID: PMC10013954 DOI: 10.1002/brb3.2903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The primary objective of this paper is to (1) provide a summary of human studies that have used brain derived neurotrophic factor (BDNF) as a biomarker, (2) review animal studies that help to elucidate the mechanistic involvement of BDNF in the development and maintenance of neuropathic pain (NP), and (3) provide a critique of the existing measurement techniques to highlight the limitations of the methods utilized to quantify BDNF in different biofluids in the blood (i.e., serum and plasma) with the intention of presenting a case for the most reliable and valid technique. Lastly, this review also explores potential moderators that can influence the measurement of BDNF and provides recommendations to standardize its quantification to reduce the inconsistencies across studies. METHODS In this manuscript we examined the literature on BDNF, focusing on its role as a biomarker, its mechanism of action in NP, and critically analyzed its measurement in serum and plasma to identify factors that contribute to the discrepancy in results between plasma and serum BDNF values. RESULTS A large heterogenous literature was reviewed that detailed BDNF's utility as a potential biomarker in healthy volunteers, patients with chronic pain, and patients with neuropsychiatric disorders but demonstrated inconsistent findings. The literature provides insight into the mechanism of action of BDNF at different levels of the central nervous system using animal studies. We identified multiple factors that influence the measurement of BDNF in serum and plasma and based on current evidence, we recommend assessing serum BDNF levels to quantify peripheral BDNF as they are more stable and sensitive to changes than plasma BDNF. CONCLUSION Although mechanistic studies clearly explain the role of BDNF, results from human studies are inconsistent. More studies are needed to evaluate the methodological challenges in using serum BDNF as a biomarker in NP.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
18
|
Talifu Z, Pan Y, Gong H, Xu X, Zhang C, Yang D, Gao F, Yu Y, Du L, Li J. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol 2022; 13:1045520. [PMID: 36589461 PMCID: PMC9799334 DOI: 10.3389/fphys.2022.1045520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The balance of ion concentrations inside and outside the cell is an essential homeostatic mechanism in neurons and serves as the basis for a variety of physiological activities. In the central nervous system, NKCC1 and KCC2, members of the SLC12 cation-chloride co-transporter (CCC) family, participate in physiological and pathophysiological processes by regulating intracellular and extracellular chloride ion concentrations, which can further regulate the GABAergic system. Over recent years, studies have shown that NKCC1 and KCC2 are essential for the maintenance of Cl- homeostasis in neural cells. NKCC1 transports Cl- into cells while KCC2 transports Cl- out of cells, thereby regulating chloride balance and neuronal excitability. An imbalance of NKCC1 and KCC2 after spinal cord injury will disrupt CI- homeostasis, resulting in the transformation of GABA neurons from an inhibitory state into an excitatory state, which subsequently alters the spinal cord neural network and leads to conditions such as spasticity and neuropathic pain, among others. Meanwhile, studies have shown that KCC2 is also an essential target for motor function reconstruction after spinal cord injury. This review mainly introduces the physiological structure and function of NKCC1 and KCC2 and discusses their pathophysiological roles after spinal cord injury.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| |
Collapse
|
19
|
Resveratrol Ameliorates Trigeminal Neuralgia-Induced Cognitive Deficits by Regulating Neural Ultrastructural Remodelling and the CREB/BDNF Pathway in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4926678. [PMID: 36478990 PMCID: PMC9722315 DOI: 10.1155/2022/4926678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain often leads to cognitive impairment. Resveratrol (Res), a natural polyphenol existing in Polygonum cuspidatum, has been widely investigated for its antinociceptive, anti-inflammatory, and neuroprotective properties. Our aim was to explore the ameliorating effects of resveratrol on pain-related behaviors and learning and memory deficits induced by cobra venom-induced trigeminal neuralgia (TN). The TN model of rats was established by injecting cobra venom solution beneath the epineurium of the infraorbital nerve. Resveratrol was intragastrically administered at a dose of 40 mg/kg twice daily beginning on postoperative day 15. CREB inhibitor 666-15 was intraperitoneally administered at a dose of 10 mg/kg from POD 35-42 after morning resveratrol treatment. Mechanical allodynia was measured via von Frey filaments. Rat free movement was videotaped and analyzed. Spatial learning and memory were evaluated via the Morris water maze test. Ultrastructures of the hippocampal DG region and infraorbital nerve were observed by transmission electron microscopy. We found that resveratrol alleviated TN-induced allodynia, ameliorated learning and memory deficits, restored the ultrastructure of hippocampal neurons and synapses, repaired the damaged myelin sheath of the infraorbital nerve, and activated the CREB/BDNF pathway in the hippocampus of TN rats. CREB inhibitor administration suppressed the resveratrol-rescued abnormal hippocampal ultrastructural changes and aggravated spatial learning and memory impairment by inhibiting CREB/BDNF pathway activation in the hippocampus. Our findings indicated that resveratrol alleviated pain and improved cognitive deficits, probably by regulating neural ultrastructure remodelling and the CREB/BDNF pathway.
Collapse
|
20
|
Cheng T, Xu Z, Ma X. The role of astrocytes in neuropathic pain. Front Mol Neurosci 2022; 15:1007889. [PMID: 36204142 PMCID: PMC9530148 DOI: 10.3389/fnmol.2022.1007889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Neuropathic pain, whose symptoms are characterized by spontaneous and irritation-induced painful sensations, is a condition that poses a global burden. Numerous neurotransmitters and other chemicals play a role in the emergence and maintenance of neuropathic pain, which is strongly correlated with common clinical challenges, such as chronic pain and depression. However, the mechanism underlying its occurrence and development has not yet been fully elucidated, thus rendering the use of traditional painkillers, such as non-steroidal anti-inflammatory medications and opioids, relatively ineffective in its treatment. Astrocytes, which are abundant and occupy the largest volume in the central nervous system, contribute to physiological and pathological situations. In recent years, an increasing number of researchers have claimed that astrocytes contribute indispensably to the occurrence and progression of neuropathic pain. The activation of reactive astrocytes involves a variety of signal transduction mechanisms and molecules. Signal molecules in cells, including intracellular kinases, channels, receptors, and transcription factors, tend to play a role in regulating post-injury pain once they exhibit pathological changes. In addition, astrocytes regulate neuropathic pain by releasing a series of mediators of different molecular weights, actively participating in the regulation of neurons and synapses, which are associated with the onset and general maintenance of neuropathic pain. This review summarizes the progress made in elucidating the mechanism underlying the involvement of astrocytes in neuropathic pain regulation.
Collapse
|
21
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Singh J, Thapliyal S, Kumar A, Paul P, Kumar N, Bisht M, Naithani M, Rao S, Handu SS. Dimethyl Fumarate Ameliorates Paclitaxel-Induced Neuropathic Pain in Rats. Cureus 2022; 14:e28818. [PMID: 36225395 PMCID: PMC9536397 DOI: 10.7759/cureus.28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) is nonresponsive to the currently available analgesics. Previous studies have shown the role of oxidative stress and central sensitization in the development of peripheral neuropathy. Dimethyl fumarate (DMF) acts as a nuclear factor erythroid-2-related factor 2 (Nrf2) activator with neuroprotective benefits and is approved for use in multiple sclerosis. Materials and methods In the current research, we evaluated the efficacy of DMF on paclitaxel-induced peripheral neuropathy in rats. Every alternate day for one week, paclitaxel 2 mg/kg dose was injected to establish a rat model of PIPN. Animals were treated with 25 mg/kg and 50 mg/kg of DMF. All the animals were assessed for thermal hyperalgesia, cold allodynia, and mechanical allodynia once a week. The gene expression of Nrf2 and the levels of pro-inflammatory mediators (interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and IL-1β) were quantified in the sciatic nerves of these rats. The levels of p38 mitogen-activated protein kinase (MAPK) and brain-derived neurotrophic factor (BDNF) were quantified in the dorsal horn of the spinal cord. Results DMF significantly attenuated paclitaxel-induced thermal hyperalgesia and cold/mechanical allodynia. A significant decrease in the levels of pro-inflammatory cytokines with the levels of p38 MAPK and BDNF was observed in the DMF-treated animals. DMF treatment significantly upregulated the gene expression of Nrf2 in the sciatic nerve. Conclusion These findings suggest that DMF prevented the development of PIPN in rats through the activation of Nrf2 and the inhibition of p38 MAPK and BDNF.
Collapse
|
23
|
Liu X, Zhao C, Han Y, Feng R, Cui X, Zhou Y, Li Z, Bai Q. RNA sequencing profiling of mRNAs, long noncoding RNAs, and circular RNAs in Trigeminal Ganglion following Temporomandibular Joint inflammation. Front Cell Dev Biol 2022; 10:945793. [PMID: 36051440 PMCID: PMC9424726 DOI: 10.3389/fcell.2022.945793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with temporomandibular joint disorders (TMD) have high levels of inflammatory pain-related disability, which seriously affects their physical and mental health. However, an effective treatment is yet to be developed. Both circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) contribute to regulating pain conduction. In our current study, we report the expression profiles of circRNAs, lncRNAs, and mRNAs in the trigeminal ganglion (TG) associated with complete Freund’s adjuvant (CFA)-induced TMD inflammation pain. The collected TGs from the experimental (CFA) and control (saline) groups were processed for deep RNA sequencing. Overall, 1078,909,068 clean reads were obtained. A total of 15,657 novel lncRNAs were identified, where 281 lncRNAs were differentially expressed on CFA3D and 350 lncRNAs were differentially expressed on CFA6D. In addition, a total of 55,441 mRNAs and 27,805 circRNAs were identified, where 3,914 mRNAs and 91 circRNAs were found differentially expressed, between the CFA3D and saline groups, while 4,232 mRNAs and 98 DE circRNAs were differentially expressed between the CFA6D and saline groups. Based on functional analyses, we found that the most significant enriched biological processes of the upregulated mRNAs were involved in the immunity, neuron projection, inflammatory response, MAPK signaling pathway, Ras signaling pathway, chemokine signaling pathway, and inflammatory response in TG. Further analyses of Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway suggest the involvement of dysregulated genes in the pain occurrence mechanism. Our findings provide a resource for expression patterns of gene transcripts in regions related to pain. These results suggest that apoptosis and neuroinflammation are important pathogenic mechanisms underlying TMD pain. Some of the reported differentially expressed genes might be considered promising therapeutic targets. The current research study revealed the expression profiles of circRNAs, lncRNAs, and mRNAs during TMD inflammation pain and sheds light on the roles of circRNAs and lncRNAs underlying the pain pathway in the trigeminal system of TMD inflammation pain.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenchen Zhao
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yupeng Han
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Feng
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaona Cui
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoyao Zhou
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou, China
- *Correspondence: Zhisong Li, ; Qian Bai,
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou, China
- *Correspondence: Zhisong Li, ; Qian Bai,
| |
Collapse
|
24
|
Miao HH, Miao Z, Pan JG, Li XH, Zhuo M. Brain-derived neurotrophic factor produced long-term synaptic enhancement in the anterior cingulate cortex of adult mice. Mol Brain 2021; 14:140. [PMID: 34526080 PMCID: PMC8442386 DOI: 10.1186/s13041-021-00853-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/04/2021] [Indexed: 12/04/2022] Open
Abstract
Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.
Collapse
Affiliation(s)
- Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China
| | - Zhuang Miao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Ji-Gang Pan
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Xu-Hui Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China. .,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China. .,Institute for Brain Research, QingDao International Academician Park, Qing Dao, Shandong, People's Republic of China.
| |
Collapse
|