1
|
Dabouri Farimani F, Hosseini M, Amirahmadi S, Akbarian M, Shirazinia M, Barabady M, Rajabian A. Cedrol supplementation ameliorates memory deficits by regulating neuro-inflammation and cholinergic function in lipopolysaccharide-induced cognitive impairment in rats. Heliyon 2024; 10:e30356. [PMID: 38707398 PMCID: PMC11068808 DOI: 10.1016/j.heliyon.2024.e30356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Cedrol, a sesquiterpene alcohol, is found in a high amount in several conifers. It possess several beneficial health effects, including antioxidant and anti-inflammatory properties. Objective: This study evaluates the neuroprotective role of cedrol against lipopolysaccharide (LPS)-induced neuroinflammation and memory loss in rats. Methods Wistar rats were treated with cedrol (7.5, 15, and 30 mg/kg, oral, two weeks). During the last week, the rats (except for the control group) were treated with LPS (intraperitoneal injection, 1 mg/kg) to induce memory impairment. After that, the animals were subjected to behavioral studies (Morris water maze and passive avoidance) and biochemical assessments. Results Our results showed a significant decrease in learning and memory function-in LPS-induced rats which were reversed by cedrol. Also, there was a significant increase in the cerebral levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and malondialdehyde (MDA) as well as acetylcholinesterase (AChE) activity in LPS-treated rats. Besides, a significant reduction in total thiol and superoxide dismutase levels was observed in LPS-treated rats. However, cedrol significantly decreased the brain level of AChE, TNF-α, and IL-1β. Administration of cedrol also restored the oxidative stress markers. Conclusion the beneficial effects of cedrol against LPS-induced memory impairment could be due to antioxidant activities and modulation of neuro-inflammatory mediators.
Collapse
Affiliation(s)
- Faezeh Dabouri Farimani
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moselm Barabady
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Di T, He L, Shi Q, Chen L, Zhu L, Zhao S, Zhang C. Emodin Blocks mPTP Opening and Improves LPS-Induced HMEC-1 Cell Injury by Upregulation of ATP5A1. Chem Biodivers 2024; 21:e202301916. [PMID: 38511277 DOI: 10.1002/cbdv.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.
Collapse
Affiliation(s)
- Tietao Di
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Limin He
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lu Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lei Zhu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Sisi Zhao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| |
Collapse
|
3
|
Xiao Z, Wei X, Li M, Yang K, Chen R, Su Y, Yu Z, Liang Y, Ge J. Myeloid-specific deletion of Capns1 attenuates myocardial infarction injury via restoring mitochondrial function and inhibiting inflammasome activation. J Mol Cell Cardiol 2023; 183:54-66. [PMID: 37689005 DOI: 10.1016/j.yjmcc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Mitochondrial dysfunction of macrophage-mediated inflammatory response plays a key pathophysiological process in myocardial infarction (MI). Calpains are a well-known family of calcium-dependent cysteine proteases that regulate a variety of processes, including cell adhesion, proliferation, and migration, as well as mitochondrial function and inflammation. CAPNS1, the common regulatory subunit of calpain-1 and 2, is essential for the stabilization and activity of the catalytic subunit. Emerging studies suggest that calpains may serve as key mediators in mitochondria and NLRP3 inflammasome. This study investigated the role of myeloid cell calpains in MI. METHODS MI models were constructed using myeloid-specific Capns1 knockout mice. Cardiac function, cardiac fibrosis, and inflammatory infiltration were investigated. In vitro, bone marrow-derived macrophages (BMDMs) were isolated from mice. Mitochondrial function and NLRP3 activation were assessed in BMDMs under LPS stimulation. ATP5A1 knockdown and Capns1 knock-out mice were subjected to MI to investigate their roles in MI injury. RESULTS Ablation of calpain activities by Capns1 deletion improved the cardiac function, reduced infarct size, and alleviated cardiac fibrosis in mice subjected to MI. Mechanistically, Capns1 knockout reduced the cleavage of ATP5A1 and restored the mitochondria function thus inhibiting the inflammasome activation. ATP5A1 knockdown antagonized the protective effect of Capns1 mKO and aggravated MI injury. CONCLUSION This study demonstrated that Capns1 depletion in macrophages mitigates MI injury via maintaining mitochondrial homeostasis and inactivating the NLRP3 inflammasome signaling pathway. This study may offer novel insights into MI injury treatment.
Collapse
Affiliation(s)
- Zilong Xiao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghui Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Ruizhen Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ziqing Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yixiu Liang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
4
|
Radiotherapy Side Effects: Comprehensive Proteomic Study Unraveled Neural Stem Cell Degenerative Differentiation upon Ionizing Radiation. Biomolecules 2022; 12:biom12121759. [PMID: 36551187 PMCID: PMC9775306 DOI: 10.3390/biom12121759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cranial radiation therapy is one of the most effective treatments for childhood brain cancers. Despite the ameliorated survival rate of juvenile patients, radiation exposure-induced brain neurogenic region injury could markedly impair patients' cognitive functions and even their quality of life. Determining the mechanism underlying neural stem cells (NSCs) response to irradiation stress is a crucial therapeutic strategy for cognitive impairment. The present study demonstrated that X-ray irradiation arrested NSCs' cell cycle and impacted cell differentiation. To further characterize irradiation-induced molecular alterations in NSCs, two-dimensional high-resolution mass spectrometry-based quantitative proteomics analyses were conducted to explore the mechanism underlying ionizing radiation's influence on stem cell differentiation. We observed that ionizing radiation suppressed intracellular protein transport, neuron projection development, etc., particularly in differentiated cells. Redox proteomics was performed for the quantification of cysteine thiol modifications in order to profile the oxidation-reduction status of proteins in stem cells that underwent ionizing radiation treatment. Via conjoint screening of protein expression abundance and redox status datasets, several significantly expressed and oxidized proteins were identified in differentiating NSCs subjected to X-ray irradiation. Among these proteins, succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial (sdha) and the acyl carrier protein, mitochondrial (Ndufab1) were highly related to neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, illustrating the dual-character of NSCs in cell differentiation: following exposure to ionizing radiation, the normal differentiation of NSCs was compromised, and the upregulated oxidized proteins implied a degenerative differentiation trajectory. These findings could be integrated into research on neurodegenerative diseases and future preventive strategies.
Collapse
|
5
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
6
|
Zeng Z, Chang X, Zhang D, Chen H, Zhong X, Xie Y, Yu Q, Yan C. Structural elucidation and anti-neuroinflammatory activity of Polygala tenuifolia polysaccharide. Int J Biol Macromol 2022; 219:1284-1296. [PMID: 36037912 DOI: 10.1016/j.ijbiomac.2022.08.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
Polygala tenuifolia is extensively used to treat amnesia in traditional Chinese medicine, and pharmacological studies have reported the beneficial effects of P. tenuifolia on intelligence and cognition. In the present study, the crude polysaccharide alkali-extracted from P. tenuifolia roots (PTB) inhibited lipopolysaccharide-induced microglia/astrocyte activation and significantly improved the learning and memory ability of Alzheimer's disease (AD) rats. To determine its bioactive components, a heteropolysaccharide (PTBP-1-3) was isolated from PTB. Structural analysis showed that PTBP-1-3 was composed of α-L-Araf-(1 → , → 3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, β-D-Xylp-(1→, →2,3,4)-β-D-Xylp-(1→, α-L-Rhap-(1→, β-D-Galp-(1→, →4)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →6)-α-D-Glcp-(1→, →3,6)-α-D-Glcp-(1→, →6)-α-D-Manp-(1→, and →2,4)-β-D-Manp-(1 → residues. PTBP-1-3 decreased the production of NO, TNF-α, and IL-1β in lipopolysaccharide-activated BV2 microglia cells in a manner similar to that of minocycline. In conclusion, PTBP-1-3 exhibited a potent inhibitory effect on neuroinflammation, and could be one of the bioactive ingredients in PTB for anti-neuroinflammation. PTB and PTBP-1-3 may be potential therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Zhiwei Zeng
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Chang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyan Zhong
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yikun Xie
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|