1
|
Maltese F, Pacinelli G, Monai A, Bernardi F, Capaz AM, Niello M, Walle R, de Leon N, Managò F, Leroy F, Papaleo F. Self-experience of a negative event alters responses to others in similar states through prefrontal cortex CRF mechanisms. Nat Neurosci 2024:10.1038/s41593-024-01816-y. [PMID: 39627538 DOI: 10.1038/s41593-024-01816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2024] [Indexed: 12/14/2024]
Abstract
Our own experience of emotional events influences how we approach and react to others' emotions. Here we observe that mice exhibit divergent interindividual responses to others in stress (that is, preference or avoidance) only if they have previously experienced the same aversive event. These responses are estrus dependent in females and dominance dependent in males. Notably, silencing the expression of the corticotropin-releasing factor (CRF) within the medial prefrontal cortex (mPFC) attenuates the impact of stress self-experience on the reaction to others' stress. In vivo microendoscopic calcium imaging revealed that mPFC CRF neurons are activated more toward others' stress only following the same negative self-experience. Optogenetic manipulations confirmed that higher activation of mPFC CRF neurons is responsible for the switch from preference to avoidance of others in stress, but only following stress self-experience. These results provide a neurobiological substrate underlying how an individual's emotional experience influences their approach toward others in a negative emotional state.
Collapse
Affiliation(s)
- Federica Maltese
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Monai
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabrizio Bernardi
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ana Marta Capaz
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marco Niello
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roman Walle
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Noelia de Leon
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientıficas, Universidad Miguel Hernandez de Elche, San Juan de Alicante, Alicante, Spain
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Felix Leroy
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientıficas, Universidad Miguel Hernandez de Elche, San Juan de Alicante, Alicante, Spain
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
2
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. PLoS One 2023; 18:e0281794. [PMID: 37797037 PMCID: PMC10553809 DOI: 10.1371/journal.pone.0281794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Nathaniel S. Rieger
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Bridget H. Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Bridget N. Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Alexandra J. Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - John P. Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| |
Collapse
|
3
|
Barretto-de-Souza L, Joseph SA, Lynch FM, Ng AJ, Crestani CC, Christianson JP. Melanin-concentrating hormone and orexin shape social affective behavior via action in the insular cortex of rat. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06408-5. [PMID: 37369782 DOI: 10.1007/s00213-023-06408-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE In a social context, individuals are able to detect external information from others and coordinate behavioral responses according to the situation, a phenomenon called social decision-making. Social decision-making is multifaceted, influenced by emotional and motivational factors like stress, sickness, and hunger. However, the neurobiological basis for motivational state competition and interaction is not well known. OBJECTIVE We investigated possible neural mechanisms through which internal states could shape social behavior in a social affective preference (SAP) test. In the SAP test, experimental rats given a choice to interact with naïve or stressed conspecifics exhibit an age-dependent preference to interact with stressed juvenile conspecifics, but avoid stressed adult conspecifics. First, we assessed the effect of food and water deprivation on SAP behavior. Behavior in the SAP test requires the insular cortex, which receives input from the ingestion-related peptides melanin-concentrating hormone (MCH) and orexin neurons of the lateral hypothalamus (LH). This study aimed to evaluate the role of LH and insular MCH and orexin in SAP test. METHODS SAP tests were conducted in rats that were sated, food and water deprived or allowed 1 h of access to food and water after 14 h of deprivation (relieved condition). Separate cohorts of sated rats received cannula implants for microinjection of drugs to inhibit the LH or to block or stimulate MCH or orexin receptors in the insula prior to SAP tests or social interaction tests. RESULTS Food and water deprivation prior to SAP tests with juvenile rats caused a shift in preference away from the stressed rat toward the naïve juveniles. Pharmacological inhibition of LH with muscimol (100 ng/side) abolished the preference for the juvenile-stressed conspecific, as well as the preference for the adult naïve conspecific. The blockade of MCH receptor 1or orexin receptors in the insular cortex with SNAP94847 (50 μM) or TCS1102 (1 μM), respectively, also abolished the preference for the stressed juvenile conspecific, but only the antagonism of orexin receptors was able to abolish the preference for the adult naïve conspecific. Microinjection of increasing doses (50 or 500 nM) of MCH or orexin-A in the insular cortex increased the interaction time in the one-on-one social interaction test with juvenile conspecifics; however, only the microinjection of orexin-A increased the interaction time with adult naïve conspecifics. CONCLUSIONS Taken together, these results suggest that lateral hypothalamus peptides shape the direction of social approach or avoidance via actions MCH and orexin neurotransmission in the insular cortex.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Shemar A Joseph
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Francesca M Lynch
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
4
|
Toyoshima M, Okuda E, Hasegawa N, Kaseda K, Yamada K. Socially Transferred Stress Experience Modulates Social Affective Behaviors in Rats. Neuroscience 2022; 502:68-76. [PMID: 36064051 DOI: 10.1016/j.neuroscience.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Social communication of affective states between individuals, as well as actual experiences, influences their internal states and behaviors. Although prior stress experiences promote empathy-like behaviors, it remains unclear whether the social transmission of stress events modulates these behaviors. Here, we provide evidence that transferred stress experiences from cage mates modulate socioaffective approach-avoidance behaviors in rats. Male Wistar-Imamichi rats were assigned to one of five experimental groups (Control (n = 15); no shock with shocked cage mates (n = 15); low (0.1 mA, n = 15), middle (0.5 mA, n = 14), and high shock (1.0 mA, n = 14)). Except for the naïve and housed with stressed mate groups, rats received two foot-shocks (5 s for each). The next day, the subjects were allowed to explore two unfamiliar conspecifics; one was a naïve, while the other was a distressed conspecific that received two foot-shocks (1.0 mA, 5 s) immediately before the test. Rats that were housed with stressed mates, as well as those that experienced a higher intensity of foot-shocks, were more likely to approach, while naïve rats avoided, a distressed conspecific. These results suggest that socially transferred stress shifts socioaffective response styles from avoidance to approach toward a stressed conspecific in rats.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Eri Okuda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Natsu Hasegawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kodai Kaseda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
5
|
Rieger NS, Varela JA, Ng AJ, Granata L, Djerdjaj A, Brenhouse HC, Christianson JP. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior. Neuropsychopharmacology 2022; 47:1156-1168. [PMID: 35220413 PMCID: PMC9018766 DOI: 10.1038/s41386-022-01292-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 02/02/2023]
Abstract
Impairments in identifying and responding to the emotions of others manifest in a variety of psychopathologies. Therefore, elaborating the neurobiological mechanisms that underpin social responses to social emotions, or social affective behavior, is a translationally important goal. The insular cortex is consistently implicated in stress-related social and anxiety disorders, which are associated with diminished ability to make and use inferences about the emotions of others to guide behavior. We investigated how corticotropin-releasing factor (CRF), a neuromodulator evoked upon exposure to stressed conspecifics, influenced the insula. We hypothesized that social affective behavior requires CRF signaling in the insular cortex in order to detect stress in social interactions. In acute slices from male and female rats, CRF depolarized insular pyramidal neurons. In males, but not females, CRF suppressed presynaptic GABAergic inhibition leading to greater excitatory synaptic efficacy in a CRF receptor 1 (CRF1)- and cannabinoid receptor 1 (CB1)-dependent fashion. In males only, insular CRF increased social investigation, and CRF1 and CB1 antagonists interfered with social interactions with stressed conspecifics. To investigate the molecular and cellular basis for the effect of CRF we examined insular CRF1 and CB1 mRNAs and found greater total insula CRF1 mRNA in females but greater CRF1 and CB1 mRNA colocalization in male insular cortex glutamatergic neurons that suggest complex, sex-specific organization of CRF and endocannabinoid systems. Together these results reveal a new mechanism by which stress and affect contribute to social affective behavior.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Juan A Varela
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Lauren Granata
- Psychology Department, Northeastern University, 360 Huntington Avenue, 115 Richards Hall, Boston, MA, 02115, USA
| | - Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, 360 Huntington Avenue, 115 Richards Hall, Boston, MA, 02115, USA
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|