1
|
Weidenauer A, Garani R, Lalang N, Watts J, Lepage M, Rusjan PM, Mizrahi R. The Role of Fatty Acid Amide Hydrolase, a Key Regulatory Endocannabinoid Enzyme, in Domain-Specific Cognitive Performance in Psychosis. Schizophr Bull 2024:sbae212. [PMID: 39729518 DOI: 10.1093/schbul/sbae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs). Furthermore, to test the hypothesis that FAAH is linked with cognition using positron emission tomography (PET). STUDY DESIGN We analyzed 80 PET scans with the highly selective FAAH radioligand [11C]CURB, including 30 patients with FEP (6 female), 15 CHR (5 female), and 35 HC (19 female). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Berg Card Sorting Test (BCST) were applied to test cognitive performance. STUDY RESULTS There was no difference in FAAH activity between groups (F2, 75 = 0.75, P = .48; Cohen's f = 0.141; small effect). Overall, there was a difference in the association between groups regarding FAAH activity and the domain visuospatial construction (F2, 72 = 4.67, P = .01; Cohen's f = .36; medium effect). Furthermore, across the sample, lower FAAH activity was associated with a higher percentage of perseverative responses (F1, 66 = 5.06, P = .03; Cohen's f = 0.28, medium effect). CONCLUSIONS We report evidence for associations between endocannabinoid alterations in FEP and CHR with specific domains of cognition (visuospatial construction and perseverative response), not overall cognition.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna 1090, Austria
| | - Ranjini Garani
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Nittha Lalang
- Vertex Pharmaceuticals, Boston, MA 02210, United States
| | - Jeremy Watts
- Research Centre, CHU Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Martin Lepage
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Pablo M Rusjan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
2
|
Peterson IL, Liktor-Busa E, Karlage KL, Young SJ, Scholpa NE, Schnellmann RG, Largent-Milnes TM. Formoterol dynamically alters endocannabinoid tone in the periaqueductal gray inducing headache. J Headache Pain 2024; 25:200. [PMID: 39563240 PMCID: PMC11575070 DOI: 10.1186/s10194-024-01907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Headache is a pain disorder present in populations world-wide with a higher incidence in females. Specifically, the incidences of medication overuse headache (MOH) have increased worldwide. Comorbidities of MOH include photosensitivity, anxiety, "brain fog", and decreased physical activity. The FDA-approved long-lasting selective β2-adrenergic receptor agonist, formoterol, is currently approved for use in severe asthma and chronic obstructive pulmonary disease. Recently, interest in repurposing formoterol for use in other disorders including Alzheimer's disease, and neuropathic pain after spinal cord injury and traumatic brain injury has gained traction. Thus, revisiting known side-effects of formoterol, like headache and anxiety, could inform treatment paradigms. The endocannabinoid (eCB) system is implicated in the etiology of preclinical headache, with observed decreases in the circulating levels of endogenous cannabinoids, referred to as Clinical Endocannabinoid Deficiency. As cross-talk between the eCB system and adrenergic receptors has been reported, this study investigated the role of the eCB system and ability of formoterol to induce headache-like periorbital allodynic behavior. METHODS Female 8-week-old C57Bl/6J mice were treated daily with formoterol (0.3 mg/kg, i.p.) for up to 42-days, during which they were assessed for periorbital allodynia, open field/novel object recognition, and photosensitivity. At the end of the study, the periaqueductal grey (PAG), a brain region known to contribute to both headache induction and maintenance, was collected and subjected to LC-MS to quantify endocannabinoid levels. RESULTS Mice exhibited periorbital allodynia at nearly all time points tested and photosensitivity from 28-days onward. Levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), along with cannabinoid receptor 1 (CB1R) expression were altered by both age and upon treatment with formoterol. Administration of FAAH/MAGL inhibitors, to target the eCB system, and a non-selective cannabinoid receptor agonist, WIN 55,212 reversed the formoterol-induced periorbital allodynia. CONCLUSIONS These results suggest that formoterol is dysregulates eCB tone to drive headache-like periorbital allodynic behaviors. These results could help inform preventative treatment options for individuals receiving formoterol, as well as provide information on the interaction between the eCB and adrenergic system.
Collapse
Affiliation(s)
- Ingrid L Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kelly L Karlage
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sally J Young
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
3
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Virijevic K, Vezmar M, Dronjak S. Sex-Related and Brain Regional Differences of URB597 Effects on Modulation of MAPK/PI3K Signaling in Chronically Stressed Rats. Mol Neurobiol 2024; 61:1495-1506. [PMID: 37725215 DOI: 10.1007/s12035-023-03649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Gender differences exist in depression incidence and antidepressant efficacy. In addition to the neurotransmission theory of depression, inflammation and disrupted signaling pathways play crucial roles in the pathophysiology of depression. Endocannabinoids offer a novel approach to treat inflammatory and emotional disorders like depression. URB597, a FAAH inhibitor, reduces endocannabinoids breakdown. In this study, URB597 effects were investigated on the pro-inflammatory cytokine interleukin-1β (IL-1β), nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3), and mitogen-activated protein kinase (MAPK)/ phosphatidylinositol 3-hydroxy kinase/ protein kinase B (PI3K) signaling in the hippocampus and the medial prefrontal cortex (mPFC) of male and female rats subjected to chronic unpredictable stress (CUS). The results show that CUS induces depression-like behaviors, and the URB597 exhibited antidepressant-like effects inboth sexes. URB597 reduced the CUS-induced NLRP3 and IL-1β increase in the hippocampus and mPFC of both sexes. URB597 increased the reduced pERK1/2 levels in the mPFC of both sexes and hippocampus of CUS males. URB597 also prevented the increase in p38 phosphorylation after chronic stress in the mPFC of both sexes and in the hippocampus of the females. The CUS suppressed the downstream Akt phosphorylation in the mPFC and hippocampi of both sexes. URB597 produced an up-regulation of the pAkt in the hippocampus of the CUS animals but did not affect the pAkt in the mPFC. These data demonstrated a sexual dimorphism in the neural cell signaling, and in the effects of endocannabinoids, and indicated these dimorphisms are region-specific.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Kristina Virijevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Milica Vezmar
- Institute of Mental Health, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia.
| |
Collapse
|
4
|
Zhou J, Zhao M, Yang Z, Chen L, Liu X. Exploring the Value of MRI Measurement of Hippocampal Volume for Predicting the Occurrence and Progression of Alzheimer's Disease Based on Artificial Intelligence Deep Learning Technology and Evidence-Based Medicine Meta-Analysis. J Alzheimers Dis 2024; 97:1275-1288. [PMID: 38277290 DOI: 10.3233/jad-230733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), a major dementia cause, lacks effective treatment. MRI-based hippocampal volume measurement using artificial intelligence offers new insights into early diagnosis and intervention in AD progression. OBJECTIVE This study, involving 483 AD patients, 756 patients with mild cognitive impairment (MCI), and 968 normal controls (NC), investigated the predictive capability of MRI-based hippocampus volume measurements for AD risk using artificial intelligence and evidence-based medicine. METHODS Utilizing data from ADNI and OASIS-brains databases, three convolutional neural networks (InceptionResNetv2, Densenet169, and SEResNet50) were employed for automated AD classification based on structural MRI imaging. A multitask deep learning model and a densely connected 3D convolutional network were utilized. Additionally, a systematic meta-analysis explored the value of MRI-based hippocampal volume measurement in predicting AD occurrence and progression, drawing on 23 eligible articles from PubMed and Embase databases. RESULTS InceptionResNetv2 outperformed other networks, achieving 99.75% accuracy and 100% AUC for AD-NC classification and 99.16% accuracy and 100% AUC for MCI-NC classification. Notably, at a 512×512 size, InceptionResNetv2 demonstrated a classification accuracy of 94.29% and an AUC of 98% for AD-NC and 97.31% accuracy and 98% AUC for MCI-NC. CONCLUSIONS The study concludes that MRI-based hippocampal volume changes effectively predict AD onset and progression, facilitating early intervention and prevention.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Radiology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| | - Mingli Zhao
- Department of Radiology, The Fourth People's Hospital of Lianyungang Affiliated to Nanjing Medical University Kangda, Lianyungang, China
| | - Zhou Yang
- Department of Rehabilitation, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| | - Liping Chen
- Department of Rehabilitation, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xiaoli Liu
- Department of Rehabilitation, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| |
Collapse
|
5
|
Kim M, Kim W, Chung C. The neural basis underlying female vulnerability to depressive disorders. Anim Cells Syst (Seoul) 2023; 27:297-308. [PMID: 38023591 PMCID: PMC10653660 DOI: 10.1080/19768354.2023.2276815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Depressive disorders are more prevalent and severe in women; however, our knowledge of the underlying factors contributing to female vulnerability to depression remains limited. Additionally, females are notably underrepresented in studies seeking to understand the mechanisms of depression. Various animal models of depression have been devised, but only recently have females been included in research. In this comprehensive review, we aim to describe the sex differences in the prevalence, pathophysiology, and responses to drug treatment in patients with depression. Subsequently, we highlight animal models of depression in which both sexes have been studied, in the pursuit of identifying models that accurately reflect female vulnerability to depression. We also introduce explanations for the neural basis of sex differences in depression. Notably, the medial prefrontal cortex and the nucleus accumbens have exhibited sex differences in previous studies. Furthermore, other brain circuits involving the dopaminergic center (ventral tegmental area) and the serotonergic center (dorsal raphe nucleus), along with their respective projections, have shown sex differences in relation to depression. In conclusion, our review covers the critical aspects of sex differences in depression, with a specific focus on female vulnerability in humans and its representation in animal models, including the potential underlying mechanisms. Employing suitable animal models that effectively represent female vulnerability would benefit our understanding of the sex-dependent pathophysiology of depression.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
6
|
Alegre-Zurano L, García-Baos A, Castro-Zavala A, Medrano M, Gallego-Landin I, Valverde O. The FAAH inhibitor URB597 reduces cocaine intake during conditioned punishment and mitigates cocaine seeking during withdrawal. Biomed Pharmacother 2023; 165:115194. [PMID: 37499453 DOI: 10.1016/j.biopha.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The endocannabinoid system is prominently implicated in the control of cocaine reinforcement due to its relevant role in synaptic plasticity and neurotransmitter modulation in the mesocorticolimbic system. The inhibition of fatty acid amide hydrolase (FAAH), and the resulting increase in anandamide and other N-acylethanolamines, represents a promising strategy for reducing drug seeking. In the present study, we aimed to assess the effects of the FAAH inhibitor URB597 (1 mg/kg) on crucial features of cocaine addictive-like behaviour in mice. Therefore, we tested the effects of URB597 on acquisition of cocaine (0.6 mg/kg/inf) self-administration, compulsive-like cocaine intake and cue-induced drug-seeking behaviour during withdrawal. URB597 reduced cocaine intake under conditioned punishment while having no impact on acquisition. This result was associated to increased cannabinoid receptor 1 gene expression in the ventral striatum and medium spiny neurons activation in the nucleus accumbens shell. Moreover, URB597 mitigated cue-induced drug-seeking behaviour during prolonged abstinence and prevented the withdrawal-induced increase in FAAH gene expression in the ventral striatum. In this case, URB597 decreased activation of medium spiny neurons in the nucleus accumbens core. Our findings evidence the prominent role of endocannabinoids in the development of cocaine addictive-like behaviours and support the potential of FAAH inhibition as a therapeutical target for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Medrano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
7
|
Gui H, Chen X, Li L, Zhu L, Jing Q, Nie Y, Zhang X. Psychological distress influences lung cancer: Advances and perspectives on the immune system and immunotherapy. Int Immunopharmacol 2023; 121:110251. [PMID: 37348230 DOI: 10.1016/j.intimp.2023.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.
Collapse
Affiliation(s)
- Huan Gui
- Department of Hyperbaric Oxygen, People`s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Xulong Chen
- School of Medicine, Guizhou University, Guiyang 550025, China; Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yingjie Nie
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Xiangyan Zhang
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|