1
|
Serum Level of Brain-Derived Neurotrophic Factor and Thrombotic Type Are Predictive of Cognitive Impairment in the Acute Period of Ischemic Strokes Patients. Neurol Res Int 2023; 2023:5578850. [PMID: 36969561 PMCID: PMC10033208 DOI: 10.1155/2023/5578850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
40–70% of patients after a stroke, including a mild one, may experience cognitive impairment. Brain-derived neurotrophic factor (BDNF) plays a significant role in the pathogenesis and rehabilitation of ischemic stroke and also affects the patients’ recovery prognosis. An association between cognitive impairment in the poststroke period and lower peripheral BDNF levels is known, but the prognostic significance of serum BDNF levels and clinical characteristics for the risk of developing cognitive impairment in the acute period remains uncertain. We conducted a prospective cohort study of patients in the acute phase of ischemic stroke. Clinical examination, assessment of neurological status, neuropsychological testing, and laboratory analyzes were performed on patients at 1 and 14 days after ischemic stroke. The state of cognitive functions was assessed by the Mini-Mental State Examination scale. Quantification of BDNF in blood serum was performed by solid-phaseenzyme-linked immunosorbent assay (ELISA). We found that within 14 days after an acute ischemic stroke, we found a decrease in the clinical severity of patients compared to 1 day of the onset of the disease before the start of treatment and a significant decrease in the level of BDNF in the blood serum of patients with ischemic stroke both on the first and on the 14th day. However, during the 2 weeks of the acute period, no significant changes were detected, despite the general improvement of the clinical condition. In our study, cognitive impairment was found in almost half of the patients on the first day of ischemic stroke, and there was no significant reduction in this prevalence over 2 weeks. We found that a low level of BDNF and a thrombotic subtype of ischemic stroke can be risk factors for cognitive impairment in the acute period, which can be useful in planning treatment and rehabilitation measures.
Collapse
|
2
|
Tarianyk KA. THE CORRECTION OF NON-MOTOR SYMPTOMS IN DIFFERENT FORMS OF PARKINSON’S DISEASE BY OPTIMIZATION THERAPY WITH LEVODOPA. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2023. [DOI: 10.29254/2077-4214-2022-4-167-237-241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Wang Y, Li D, Chen Y, Zhu S, Jiang X, Jiang Y, Gu R, Shen B, Zhu J, Pan Y, Yan J, Zhang L. Clinical features of minor hallucinations in different phenotypes of Parkinson's disease: A cross-sectional study. Front Neurol 2023; 14:1158188. [PMID: 37034082 PMCID: PMC10079986 DOI: 10.3389/fneur.2023.1158188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background Minor hallucinations (MHs) are the most common psychiatric symptom associated with Parkinson's disease (PDPsy), but little is known about their characteristics in different motor phenotypes, especially postural instability gait difficulty (PIGD). The aim of this study was to explore the clinical features of MHs in different subtypes of PD. Methods In this cross-sectional study, 213 patients with Parkinson's disease (PD) were recruited, and the data obtained included comprehensive demographics, motor subtypes, clinical scale scores, and MH contents. Motor subtypes were classified as tremor-dominant (TD), PIGD or indeterminate according to Stebbins' method. Results A total of 213 PD patients were included: 90 (42.3%) TD patients, 98 (46.0%) PIGD patients and 25 (11.7%) indeterminate. In total, 70 (32.9%) patients experienced MHs. Compared to patients with the TD phenotype, we found that patients with the PIGD phenotype had more severe motor and nonmotor symptoms. They also had a higher incidence of visual illusions (VIs) and a shorter MH latency. Conclusion Our study demonstrated that compared to patients with the TD phenotype, patients with the PIGD phenotype had a higher incidence of MHs, especially VIs, which may lead to a higher incidence of visual hallucinations (VHs). They also had a shorter latency of MHs than patients with the TD phenotype, suggesting an earlier onset of MHs and a worse prognosis.
Collapse
|
4
|
Gao Y, Cheng Y, Chen J, Lin D, Liu C, Zhang LK, Yin L, Yang R, Guan YQ. NIR-Assisted MgO-Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson's Disease through the Blood-Brain Barrier. Adv Healthc Mater 2022; 11:e2201655. [PMID: 36153843 DOI: 10.1002/adhm.202201655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Indexed: 01/28/2023]
Abstract
The blood-brain barrier (BBB) is a major limiting factor that prevents the treatment of Parkinson's disease (PD). In the present study, MgOp@PPLP nanoparticles are explored by using MgO nanoparticles as a substrate, polydopamine as a shell, wrapping anti-SNCA plasmid inside, and modifying polyethylene glycol, lactoferrin, and puerarin on the surface to improve the hydrophilicity, brain targeting and antioxidant properties of the particles, respectively. MgOp@PPLP exhibits superior near-infrared radiation (NIR) response. Under the guidance of photothermal effect, these MgOp@PPLP particles are capable of penetrating the BBB and be taken up by neuronal cells to exert gene therapy and antioxidant therapy. In both in vivo and in vitro models of PD, MgOp@PPLP exhibits good neuroprotective effects. Therefore, combined with noninvasive NIR radiation, MgOp@PPLP nanoplatform with good biocompatibility becomes an ideal material to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yifei Gao
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuxue Cheng
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chao Liu
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
5
|
Latif K, Ullah A, Shkodina AD, Boiko DI, Rafique Z, Alghamdi BS, Alfaleh MA, Ashraf GM. Drug reprofiling history and potential therapies against Parkinson's disease. Front Pharmacol 2022; 13:1028356. [PMID: 36386233 PMCID: PMC9643740 DOI: 10.3389/fphar.2022.1028356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Given the high whittling down rates, high costs, and moderate pace of new medication, revelation, and improvement, repurposing "old" drugs to treat typical and uncommon illnesses is progressively becoming an appealing proposition. Drug repurposing is the way toward utilizing existing medications in treating diseases other than the purposes they were initially designed for. Faced with scientific and economic challenges, the prospect of discovering new medication indications is enticing to the pharmaceutical sector. Medication repurposing can be used at various stages of drug development, although it has shown to be most promising when the drug has previously been tested for safety. We describe strategies of drug repurposing for Parkinson's disease, which is a neurodegenerative condition that primarily affects dopaminergic neurons in the substantia nigra. We also discuss the obstacles faced by the repurposing community and suggest new approaches to solve these challenges so that medicine repurposing can reach its full potential.
Collapse
Affiliation(s)
- Komal Latif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aman Ullah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millet University, Islamabad, Pakistan
| | - Anastasiia D. Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
- Municipal Enterprise “1 City Clinical Hospital of Poltava City Council”, Poltava, Ukraine
| | - Dmytro I. Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Zakia Rafique
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Badrah S. Alghamdi
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Vaccines and Immunotherapy, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Singh MP, Chakrabarty R, Shabir S, Yousuf S, Obaid AA, Moustafa M, Al-Shehri M, Al-Emam A, Alamri AS, Alsanie WF, Alhomrani M, Shkodina AD, Singh SK. Influence of the Gut Microbiota on the Development of Neurodegenerative Diseases. Mediators Inflamm 2022; 2022:3300903. [PMID: 36248189 PMCID: PMC9553457 DOI: 10.1155/2022/3300903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative disorders are marked by neuronal death over time, causing a variety of cognitive and motor dysfunctions. Protein misfolding, neuroinflammation, and mitochondrial and protein clearance system dysfunction have all been identified as common pathways leading to neurodegeneration in recent decades. An altered microbiome of the gut, which is considered to play a central role in diseases as well as health, has recently been identified as another potential feature seen in neurodegenerative disorders. An array of microbial molecules that are released in the digestive tract may mediate gut-brain connections and permeate many organ systems, including the nervous system. Furthermore, recent findings from clinical as well as preclinical trials suggest that the microbiota of the gut plays a critical part in gut-brain interplay and that a misbalance in the composition of the gut microbiome may be linked to the etiology of neurological disorders (majorly neurodegenerative health problems); the underlying mechanism of which is still unknown. The review aims to consider the association between the microbiota of the gut and neurodegenerative disorders, as well as to add to our understanding of the significance of the gut microbiome in neurodegeneration and the mechanisms that underlie it. Knowing the mechanisms behind the gut microbiome's role and abundance will provide us with new insights that could lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Mahendra P. Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana GT Road, Phagwara, 144411 Punjab, India
| | - Riya Chakrabarty
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana GT Road, Phagwara, 144411 Punjab, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana GT Road, Phagwara, 144411 Punjab, India
| | - Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Ludhiana GT Road, Phagwara, 144411 Punjab, India
| | - Ahmad A. Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, 9004 Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, College of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, the Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, the Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, the Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Anastasiia D. Shkodina
- Department of Neurological Diseases, Poltava State Medical University, 36000 Poltava, Ukraine
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, 226002, Lucknow, India
| |
Collapse
|
7
|
Tsagkaris C, Bilal M, Aktar I, Aboufandi Y, Tas A, Aborode AT, Suvvari TK, Ahmad S, Shkodina A, Phadke R, Emhamed MS, Baig AA, Alexiou A, Ashraf GM, Kamal MA. Cytokine storm and neuropathological alterations in patients with neurological manifestations of COVID-19. Curr Alzheimer Res 2022; 19:CAR-EPUB-126211. [PMID: 36089786 DOI: 10.2174/1567205019666220908084559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines such as TNF-α, IFN-γ, IL-6 IL-8, IL-10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients, which may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19 associated neuroinflammation, in the context of COVID-19 associated cytokine storm. While the short-term implications of this condition are extensively documented, its long-term implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk to develop neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.
Collapse
Affiliation(s)
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and health Sciences, Jamshoro, Pakistan
| | - Irem Aktar
- Istanbul University, Istanbul Faculty of Medicine, Istanbul,Turkey
| | | | - Ahmet Tas
- Istanbul University, Istanbul Faculty of Medicine, Istanbul,Turkey
| | | | | | - Shoaib Ahmad
- Punjab Medical College, Faisalabad, Pakistan
- Faisalabad Medical University, Faisalabad, Pakistan
| | | | | | | | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, 2770 NSW, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 22254 Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
8
|
Shkodina A, Iengalychev T, Tarianyk K, Boiko D, Lytvynenko N, Skrypnikov A. Relationship between sleep disorders and neuropsychiatric symptoms in Parkinson's disease: A narrative review. ACTA FACULTATIS MEDICAE NAISSENSIS 2022. [DOI: 10.5937/afmnai39-33652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aim: The objective of this narrative review was to describe the versatile links between mental status and sleep in patients with Parkinson's disease. Methods: We searched randomized controlled studies, observational studies, meta-analyses, systematic reviews, and case reports written in English in PubMed during 2015 - 2021. Additionally, to ensure the completeness of the review, a second, more in-depth literature search was performed using the same electronic database with the search inquiries of increased specificity. Results: The information on pathophysiology, epidemiology, clinical features and risk factors was extracted and formed the basis for this review. Despite how widespread sleep disorders in Parkinson's disease are, there is no systematic information about their association with neuropsychiatric symptoms, such as depression, anxiety, impulse control disorders, apathy, cognitive impairment and psychosis. In this review, we described relationships between these non-motor symptoms of Parkinson's disease, their timeline occurrence, gap in knowledge and perspectives for further research. We suppose that early treatment of sleep disorders in patients with Parkinson's disease can reduce the incidence and extent of neuropsychiatric symptoms. Conclusion: We have demonstrated multiple, multidirectional relationships between sleep disorders and neuropsychiatric symptoms. However, some of them remain unexplored. The described knowledge can be applied to further study the possibility of influencing neuropsychiatric symptoms through the correction of sleep disorders in patients with different stages of Parkinson's disease.
Collapse
|
9
|
Tarianyk KA, Lytvynenko NV, Purdenko TY, Sylenko H. Y HY. OPTIMIZATION THE TREATMENT OF MOTOR FLUCTUATIONS VARIOUS FORMS OF PARKINSON’S DISEASE. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-262-266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|