1
|
Bannon NM, Chistiakova M, Volgushev M. Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes? Front Cell Neurosci 2020; 14:204. [PMID: 33100968 PMCID: PMC7500144 DOI: 10.3389/fncel.2020.00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023] Open
Abstract
Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity. Plasticity of inhibitory systems can be mediated by changes at inhibitory synapses and/or by changes at excitatory synapses at inhibitory neurons. In this review, we consider that latter locus: plasticity at excitatory synapses to inhibitory neurons. Despite the fact that plasticity of excitatory synaptic transmission to interneurons has been studied in much less detail than in pyramids and other excitatory cells, an abundance of forms and mechanisms of plasticity have been observed in interneurons. Specific requirements and rules for induction, while exhibiting a broad diversity, could correlate with distinct sources of excitatory inputs and distinct types of inhibitory neurons. One common requirement for the induction of plasticity is the rise of intracellular calcium, which could be mediated by a variety of ligand-gated, voltage-dependent, and intrinsic mechanisms. The majority of the investigated forms of plasticity can be classified as Hebbian-type associative plasticity. Hebbian-type learning rules mediate adaptive changes of synaptic transmission. However, these rules also introduce intrinsic positive feedback on synaptic weight changes, making plastic synapses and learning networks prone to runaway dynamics. Because real inhibitory neurons do not express runaway dynamics, additional plasticity mechanisms that counteract imbalances introduced by Hebbian-type rules must exist. We argue that weight-dependent heterosynaptic plasticity has a number of characteristics that make it an ideal candidate mechanism to achieve homeostatic regulation of synaptic weight changes at excitatory synapses to inhibitory neurons.
Collapse
Affiliation(s)
- Nicholas M Bannon
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Diamantaki M, Coletta S, Nasr K, Zeraati R, Laturnus S, Berens P, Preston-Ferrer P, Burgalossi A. Manipulating Hippocampal Place Cell Activity by Single-Cell Stimulation in Freely Moving Mice. Cell Rep 2019; 23:32-38. [PMID: 29617670 DOI: 10.1016/j.celrep.2018.03.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 11/26/2022] Open
Abstract
Learning critically depends on the ability to rapidly form and store non-overlapping representations of the external world. In line with their postulated role in episodic memory, hippocampal place cells can undergo a rapid reorganization of their firing fields upon contextual manipulations. To explore the mechanisms underlying such global remapping, we juxtacellularly stimulated 42 hippocampal neurons in freely moving mice during spatial exploration. We found that evoking spike trains in silent neurons was sufficient for creating place fields, while in place cells, juxtacellular stimulation induced a rapid remapping of their place fields to the stimulus location. The occurrence of complex spikes was most predictive of place field plasticity. Our data thus indicate that plasticity-inducing stimuli are able to rapidly bias place cell activity, simultaneously suppressing existing place fields. We propose that such competitive place field dynamics could support the orthogonalization of the hippocampal map during global remapping.
Collapse
Affiliation(s)
- Maria Diamantaki
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Stefano Coletta
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Khaled Nasr
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Roxana Zeraati
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Sophie Laturnus
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Triesch J, Vo AD, Hafner AS. Competition for synaptic building blocks shapes synaptic plasticity. eLife 2018; 7:37836. [PMID: 30222108 PMCID: PMC6181566 DOI: 10.7554/elife.37836] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Changes in the efficacies of synapses are thought to be the neurobiological basis of learning and memory. The efficacy of a synapse depends on its current number of neurotransmitter receptors. Recent experiments have shown that these receptors are highly dynamic, moving back and forth between synapses on time scales of seconds and minutes. This suggests spontaneous fluctuations in synaptic efficacies and a competition of nearby synapses for available receptors. Here we propose a mathematical model of this competition of synapses for neurotransmitter receptors from a local dendritic pool. Using minimal assumptions, the model produces a fast multiplicative scaling behavior of synapses. Furthermore, the model explains a transient form of heterosynaptic plasticity and predicts that its amount is inversely related to the size of the local receptor pool. Overall, our model reveals logistical tradeoffs during the induction of synaptic plasticity due to the rapid exchange of neurotransmitter receptors between synapses.
Collapse
Affiliation(s)
- Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.,Goethe University, Frankfurt am Main, Germany
| | - Anh Duong Vo
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.,Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
4
|
Zenke F, Gerstner W. Hebbian plasticity requires compensatory processes on multiple timescales. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0259. [PMID: 28093557 PMCID: PMC5247595 DOI: 10.1098/rstb.2016.0259] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
We review a body of theoretical and experimental research on Hebbian and homeostatic plasticity, starting from a puzzling observation: while homeostasis of synapses found in experiments is a slow compensatory process, most mathematical models of synaptic plasticity use rapid compensatory processes (RCPs). Even worse, with the slow homeostatic plasticity reported in experiments, simulations of existing plasticity models cannot maintain network stability unless further control mechanisms are implemented. To solve this paradox, we suggest that in addition to slow forms of homeostatic plasticity there are RCPs which stabilize synaptic plasticity on short timescales. These rapid processes may include heterosynaptic depression triggered by episodes of high postsynaptic firing rate. While slower forms of homeostatic plasticity are not sufficient to stabilize Hebbian plasticity, they are important for fine-tuning neural circuits. Taken together we suggest that learning and memory rely on an intricate interplay of diverse plasticity mechanisms on different timescales which jointly ensure stability and plasticity of neural circuits.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Friedemann Zenke
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Wulfram Gerstner
- Brain Mind Institute, School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland
| |
Collapse
|
5
|
Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M. Homeostatic role of heterosynaptic plasticity: models and experiments. Front Comput Neurosci 2015; 9:89. [PMID: 26217218 PMCID: PMC4500102 DOI: 10.3389/fncom.2015.00089] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity-heterosynaptic plasticity-represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s) should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve a homeostatic role during on-going synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Jen-Yung Chen
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, USA
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, USA
| | - Maxim Volgushev
- Department of Psychology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
6
|
Chistiakova M, Bannon NM, Bazhenov M, Volgushev M. Heterosynaptic plasticity: multiple mechanisms and multiple roles. Neuroscientist 2014; 20:483-98. [PMID: 24727248 DOI: 10.1177/1073858414529829] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasticity is a universal property of synapses. It is expressed in a variety of forms mediated by a multitude of mechanisms. Here we consider two broad kinds of plasticity that differ in their requirement for presynaptic activity during the induction. Homosynaptic plasticity occurs at synapses that were active during the induction. It is also called input specific or associative, and it is governed by Hebbian-type learning rules. Heterosynaptic plasticity can be induced by episodes of strong postsynaptic activity also at synapses that were not active during the induction, thus making any synapse at a cell a target to heterosynaptic changes. Both forms can be induced by typical protocols used for plasticity induction and operate on the same time scales but have differential computational properties and play different roles in learning systems. Homosynaptic plasticity mediates associative modifications of synaptic weights. Heterosynaptic plasticity counteracts runaway dynamics introduced by Hebbian-type rules and balances synaptic changes. It provides learning systems with stability and enhances synaptic competition. We conclude that homosynaptic and heterosynaptic plasticity represent complementary properties of modifiable synapses, and both are necessary for normal operation of neural systems with plastic synapses.
Collapse
Affiliation(s)
| | - Nicholas M Bannon
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA
| | - Maxim Volgushev
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Skorheim S, Lonjers P, Bazhenov M. A spiking network model of decision making employing rewarded STDP. PLoS One 2014; 9:e90821. [PMID: 24632858 PMCID: PMC3954625 DOI: 10.1371/journal.pone.0090821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
Reward-modulated spike timing dependent plasticity (STDP) combines unsupervised STDP with a reinforcement signal that modulates synaptic changes. It was proposed as a learning rule capable of solving the distal reward problem in reinforcement learning. Nonetheless, performance and limitations of this learning mechanism have yet to be tested for its ability to solve biological problems. In our work, rewarded STDP was implemented to model foraging behavior in a simulated environment. Over the course of training the network of spiking neurons developed the capability of producing highly successful decision-making. The network performance remained stable even after significant perturbations of synaptic structure. Rewarded STDP alone was insufficient to learn effective decision making due to the difficulty maintaining homeostatic equilibrium of synaptic weights and the development of local performance maxima. Our study predicts that successful learning requires stabilizing mechanisms that allow neurons to balance their input and output synapses as well as synaptic noise.
Collapse
Affiliation(s)
- Steven Skorheim
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Peter Lonjers
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.
Collapse
|
9
|
Yamaguchi Y, Sato N, Wagatsuma H, Wu Z, Molter C, Aota Y. A unified view of theta-phase coding in the entorhinal–hippocampal system. Curr Opin Neurobiol 2007; 17:197-204. [PMID: 17379502 DOI: 10.1016/j.conb.2007.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 03/13/2007] [Indexed: 11/21/2022]
Abstract
The discovery of theta-rhythm-dependent firing of rodent hippocampal neurons highlighted the functional significance of temporal encoding in hippocampal memory. However, earlier theoretical studies on this topic seem divergent and experimental implications are invariably complicated. To obtain a unified understanding of neural dynamics in the hippocampal memory, we here review recent developments in computational models and experimental discoveries on the 'theta-phase precession' of hippocampal place cells and entorhinal grid cells. We identify a theoretical hypothesis that is well supported by experimental facts; this model reveals a significant contribution of theta-phase coding to the on-line real-time operation of episodic events, through highly parallel representation of spatiotemporal information.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan.
| | | | | | | | | | | |
Collapse
|