1
|
Pei Z, Zhu Z, Zhen Z, Wu X. Disentangle the group and individual components of functional connectome with autoencoders. Neural Netw 2025; 181:106786. [PMID: 39423491 DOI: 10.1016/j.neunet.2024.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
One of the central goals of neuroscience is to understand the group commonality and individual variability in functional connectome. However, the entangled nature of the group and individual components in functional connectome poses challenges. Some methods have attempted to disentangle these group and individual components, typically using functional connectivity (FC). Among them, some first compute FC from BOLD signals and then disentangle group and individual components with FC; these approaches are termed FC-level methods. In contrast, some methods first disentangle group and individual components at the BOLD level and then compute FC; these techniques are termed BOLD-level methods. BOLD-level research has demonstrated that directly modeling BOLD signals enables the capture of novel aspects of group and individual components and achieves a better disentangling effect. To this end, we propose a novel network framework, termed BRAin Signal DEcoupling (BRASDE), to disentangle group and individual components from BOLD signals, as well as complementary inductive biases that serves as disentangling strategies. Here, we assume that group components are consistent across different subjects and sessions in BOLD signals; individual components are consistent across different sessions within the same subject but variable across different subjects in BOLD signals. Utilizing the multiple sessions of fMRI data from the Human Connectome Project (HCP), we demonstrate that compared to the existing methods, BRASDE yields enhanced consistency across subjects for group components. At the same time, BRASDE amplifies the differentiation among individual components across subjects, and provides enhanced consistency within the same subjects across various sessions. Moreover, the superior performance achieved on novel sessions and subjects demonstrates the excellent generalization of BRASDE. Our methods also reveal significantly higher individual differences in the right hemisphere than in the left hemisphere. In addition, experiments validate the associations between individual components and cognitive behaviors. Overall, we propose an effective approach for disentangling group and individual components, which will facilitate further investigation into the general principles and neural mechanisms underlying individual variability in the human brain. The code can be found at https://github.com/PeiKeepMoving/BRASDE.
Collapse
Affiliation(s)
- Zhaodi Pei
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100875, China; School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China.
| | - Zhiyuan Zhu
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Xia Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100875, China; School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning functional brain networks with heterogeneous connectivities for brain disease identification. Neural Netw 2024; 180:106660. [PMID: 39208458 DOI: 10.1016/j.neunet.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.
Collapse
Affiliation(s)
- Chaojun Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China; School of Computer Science and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Yunling Ma
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Lishan Qiao
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Song B, Yoshida S. Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer's disease classification based on gradient-weighted class activation mapping. PLoS One 2024; 19:e0303278. [PMID: 38771733 PMCID: PMC11108152 DOI: 10.1371/journal.pone.0303278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Currently, numerous studies focus on employing fMRI-based deep neural networks to diagnose neurological disorders such as Alzheimer's Disease (AD), yet only a handful have provided results regarding explainability. We address this gap by applying several prevalent explainability methods such as gradient-weighted class activation mapping (Grad-CAM) to an fMRI-based 3D-VGG16 network for AD diagnosis to improve the model's explainability. The aim is to explore the specific Region of Interest (ROI) of brain the model primarily focuses on when making predictions, as well as whether there are differences in these ROIs between AD and normal controls (NCs). First, we utilized multiple resting-state functional activity maps including ALFF, fALFF, ReHo, and VMHC to reduce the complexity of fMRI data, which differed from many studies that utilized raw fMRI data. Compared to methods utilizing raw fMRI data, this manual feature extraction approach may potentially alleviate the model's burden. Subsequently, 3D-VGG16 were employed for AD classification, where the final fully connected layers were replaced with a Global Average Pooling (GAP) layer, aimed at mitigating overfitting while preserving spatial information within the feature maps. The model achieved a maximum of 96.4% accuracy on the test set. Finally, several 3D CAM methods were employed to interpret the models. In the explainability results of the models with relatively high accuracy, the highlighted ROIs were primarily located in the precuneus and the hippocampus for AD subjects, while the models focused on the entire brain for NC. This supports current research on ROIs involved in AD. We believe that explaining deep learning models would not only provide support for existing research on brain disorders, but also offer important referential recommendations for the study of currently unknown etiologies.
Collapse
Affiliation(s)
- Boyue Song
- Graduate School of Engineering, Kochi University of Technology, Kami City, Kochi Prefecture, Japan
| | - Shinichi Yoshida
- School of Information, Kochi University of Technology, Kami City, Kochi Prefecture, Japan
| | | |
Collapse
|
4
|
Dornaika F, El Hajjar S. Towards a unified framework for graph-based multi-view clustering. Neural Netw 2024; 173:106197. [PMID: 38422834 DOI: 10.1016/j.neunet.2024.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/12/2023] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Recently, clustering data collected from various sources has become a hot topic in real-world applications. The most common methods for multi-view clustering can be divided into several categories: Spectral clustering algorithms, subspace multi-view clustering algorithms, matrix factorization approaches, and kernel methods. Despite the high performance of these methods, they directly fuse all similarity matrices of all views and separate the affinity learning process from the multiview clustering process. The performance of these algorithms can be affected by noisy affinity matrices. To overcome this drawback, this paper presents a novel method called One Step Multi-view Clustering via Consensus Graph Learning and Nonnegative Embedding (OSMGNE). Instead of directly merging the similarity matrices of different views, which may contain noise, a step of learning a consensus similarity matrix is performed. This step forces the similarity matrices of different views to be too similar, which eliminates the problem of noisy data. Moreover, the use of the nonnegative embedding matrix (soft cluster assignment matrix makes it possible to directly obtain the final clustering result without any extra step. The proposed method can solve five subtasks simultaneously. It jointly estimates the similarity matrix of all views, the similarity matrix of each view, the corresponding spectral projection matrix, the unified clustering indicator matrix, and automatically gives the weight of each view without the use of hyper-parameters. In addition, another version of our method is also studied in this paper. This method differs from the first one by using a consensus spectral projection matrix and a consensus Laplacian matrix over all views. An iterative algorithm is proposed to solve the optimization problem of these two methods. The two proposed methods are tested on several real datasets, which prove their superiority.
Collapse
Affiliation(s)
- F Dornaika
- University of the Basque Country UPV/EHU, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam.
| | - S El Hajjar
- University of the Basque Country UPV/EHU, San Sebastian, Spain
| |
Collapse
|
5
|
Gong C, Jing C, Chen X, Pun CM, Huang G, Saha A, Nieuwoudt M, Li HX, Hu Y, Wang S. Generative AI for brain image computing and brain network computing: a review. Front Neurosci 2023; 17:1203104. [PMID: 37383107 PMCID: PMC10293625 DOI: 10.3389/fnins.2023.1203104] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial.
Collapse
Affiliation(s)
- Changwei Gong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xuhang Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Computer and Information Science, University of Macau, Macau, China
| | - Chi Man Pun
- Department of Computer and Information Science, University of Macau, Macau, China
| | - Guoli Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ashirbani Saha
- Department of Oncology and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Martin Nieuwoudt
- Institute for Biomedical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Han-Xiong Li
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Xu F, Qiao C, Zhou H, Calhoun VD, Stephen JM, Wilson TW, Wang Y. An explainable autoencoder with multi-paradigm fMRI fusion for identifying differences in dynamic functional connectivity during brain development. Neural Netw 2023; 159:185-197. [PMID: 36580711 PMCID: PMC11522794 DOI: 10.1016/j.neunet.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Multi-paradigm deep learning models show great potential for dynamic functional connectivity (dFC) analysis by integrating complementary information. However, many of them cannot use information from different paradigms effectively and have poor explainability, that is, the ability to identify significant features that contribute to decision making. In this paper, we propose a multi-paradigm fusion-based explainable deep sparse autoencoder (MF-EDSAE) to address these issues. Considering explainability, the MF-EDSAE is constructed based on a deep sparse autoencoder (DSAE). For integrating information effectively, the MF-EDASE contains the nonlinear fusion layer and multi-paradigm hypergraph regularization. We apply the model to the Philadelphia Neurodevelopmental Cohort and demonstrate it achieves better performance in detecting dynamic FC (dFC) that differ significantly during brain development than the single-paradigm DSAE. The experimental results show that children have more dispersive dFC patterns than adults. The function of the brain transits from undifferentiated systems to specialized networks during brain development. Meanwhile, adults have stronger connectivities between task-related functional networks for a given task than children. As the brain develops, the patterns of the global dFC change more quickly when stimulated by a task.
Collapse
Affiliation(s)
- Faming Xu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Huiyu Zhou
- School of Computing and Mathematical Sciences, University of Leicester, LE1 7RH, UK.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30030, USA.
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
7
|
Warren SL, Moustafa AA. Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review. J Neuroimaging 2023; 33:5-18. [PMID: 36257926 PMCID: PMC10092597 DOI: 10.1111/jon.13063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is currently diagnosed using a mixture of psychological tests and clinical observations. However, these diagnoses are not perfect, and additional diagnostic tools (e.g., MRI) can help improve our understanding of AD as well as our ability to detect the disease. Accordingly, a large amount of research has been invested into innovative diagnostic methods for AD. Functional MRI (fMRI) is a form of neuroimaging technology that has been used to diagnose AD; however, fMRI is incredibly noisy, complex, and thus lacks clinical use. Nonetheless, recent innovations in deep learning technology could enable the simplified and streamlined analysis of fMRI. Deep learning is a form of artificial intelligence that uses computer algorithms based on human neural networks to solve complex problems. For example, in fMRI research, deep learning models can automatically denoise images and classify AD by detecting patterns in participants' brain scans. In this systematic review, we investigate how fMRI (specifically resting-state fMRI) and deep learning methods are used to diagnose AD. In turn, we outline the common deep neural network, preprocessing, and classification methods used in the literature. We also discuss the accuracy, strengths, limitations, and future direction of fMRI deep learning methods. In turn, we aim to summarize the current field for new researchers, suggest specific areas for future research, and highlight the potential of fMRI to aid AD diagnoses.
Collapse
Affiliation(s)
- Samuel L. Warren
- School of Psychology, Faculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
- Department of Human Anatomy and Physiology, Faculty of Health SciencesUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
8
|
Ji J, Ren Y, Lei M. FC–HAT: Hypergraph attention network for functional brain network classification. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|