1
|
Schuhholz M, Ruff C, Bürkle E, Feiweier T, Clifford B, Kowarik M, Bender B. Ultrafast Brain MRI at 3 T for MS: Evaluation of a 51-Second Deep Learning-Enhanced T2-EPI-FLAIR Sequence. Diagnostics (Basel) 2024; 14:1841. [PMID: 39272626 PMCID: PMC11393910 DOI: 10.3390/diagnostics14171841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIRUF) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIRUF. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIRUF and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIRUF and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIRUF was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIRUF. In conclusion, FLAIRUF could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality.
Collapse
Affiliation(s)
- Martin Schuhholz
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany
| | - Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany
| | - Eva Bürkle
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany
| | | | | | - Markus Kowarik
- Department of Neurology and Stroke, Neurological Clinic, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany
| |
Collapse
|
2
|
De Luca F, Kits A, Martin Muñoz D, Aspelin Å, Kvist O, Österman Y, Diaz Ruiz S, Skare S, Falk Delgado A. Elective one-minute full brain multi-contrast MRI versus brain CT in pediatric patients: a prospective feasibility study. BMC Med Imaging 2024; 24:23. [PMID: 38267889 PMCID: PMC10809606 DOI: 10.1186/s12880-024-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Brain CT can be used to evaluate pediatric patients with suspicion of cerebral pathology when anesthetic and MRI resources are scarce. This study aimed to assess if pediatric patients referred for an elective brain CT could endure a diagnostic fast brain MRI without general anesthesia using a one-minute multi-contrast EPI-based sequence (EPIMix) with comparable diagnostic performance. METHODS Pediatric patients referred for an elective brain CT between March 2019 and March 2020 were prospectively included and underwent EPIMix without general anesthesia in addition to CT. Three readers (R1-3) independently evaluated EPIMix and CT images on two separate occasions. The two main study outcomes were the tolerance to undergo an EPIMix scan without general anesthesia and its performance to classify a scan as normal or abnormal. Secondary outcomes were assessment of disease category, incidental findings, diagnostic image quality, diagnostic confidence, and image artifacts. Further, a side-by-side evaluation of EPIMix and CT was performed. The signal-to-noise ratio (SNR) was calculated for EPIMix on T1-weighted, T2-weighted, and ADC images. Descriptive statistics, Fisher's exact test, and Chi-squared test were used to compare the two imaging modalities. RESULTS EPIMix was well tolerated by all included patients (n = 15) aged 5-16 (mean 11, SD 3) years old. Thirteen cases on EPIMix and twelve cases on CT were classified as normal by all readers (R1-3), while two cases on EPIMix and three cases on CT were classified as abnormal by one reader (R1), (R1-3, p = 1.00). There was no evidence of a difference in diagnostic confidence, image quality, or the presence of motion artifacts between EPIMix and CT (R1-3, p ≥ 0.10). Side-by-side evaluation (R2 + R4 + R5) reviewed all scans as lacking significant pathological findings on EPIMix and CT images. CONCLUSIONS Full brain MRI-based EPIMix sequence was well tolerated without general anesthesia with a diagnostic performance comparable to CT in elective pediatric patients. TRIAL REGISTRATION This study was approved by the Swedish Ethical Review Authority (ethical approval number/ID Ethical approval 2017/2424-31/1). This study was a clinical trial study, with study protocol published at ClinicalTrials.gov with Trial registration number NCT03847051, date of registration 18/02/2019.
Collapse
Affiliation(s)
- Francesca De Luca
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Annika Kits
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Martin Muñoz
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa Aspelin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Kvist
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Yords Österman
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Diaz Ruiz
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Radiology, Lund University, Lund, Sweden
| | - Stefan Skare
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Falk Delgado
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Gruenebach N, Abello Mercado MA, Grauhan NF, Sanner A, Kronfeld A, Groppa S, Schoeffling VI, Hilbert T, Brockmann MA, Othman AE. Clinical feasibility and validation of the accelerated T2 mapping sequence GRAPPATINI in brain imaging. Heliyon 2023; 9:e15064. [PMID: 37096006 PMCID: PMC10121777 DOI: 10.1016/j.heliyon.2023.e15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Rationale and objectives To prospectively evaluate feasibility and robustness of an accelerated T2 mapping sequence (GRAPPATINI) in brain imaging and to assess its synthetic T2-weighted images (sT2w) in comparison with a standard T2-weighted sequence (T2 TSE). Material and methods Volunteers were included to evaluate the robustness and consecutive patients for morphological evaluation. They were scanned on a 3 T MR-scanner. Healthy volunteers underwent GRAPPATINI of the brain three times (day 1: scan/rescan; day 2: follow-up). Patients between the ages of 18 and 85 years who were able to provide written informed consent and who had no MRI contraindications were included. For morphological comparison two radiologists with 5 and 7 years of experience in brain MRI evaluated image quality using a Likert scale (1 being poor, 4 being excellent) in a blinded and randomized fashion. Results Images were successfully acquired in ten volunteers with a mean age of 25 years (ranging from 22 to 31 years) and 52 patients (23 men/29 women) with a mean age of 55 years (range of 22-83 years). Most brain regions showed repeatable and reproducible T2 values (rescan: CoV 0.75%-2.06%, ICC 69%-92.3%; follow-up: CoV 0.41%-1.59%, ICC 79.4%-95.8%), except for the caudate nucleus (rescan: CoV 7.25%, ICC 66.3%; follow-up: CoV 4.78%, ICC 80.9%). Image quality of sT2w was rated inferior to T2 TSE (median for T2 TSE: 3; sT2w: 1-2), but measurements revealed good interrater reliability of sT2w (lesion counting: ICC 0.85; diameter measure: ICC 0.68 and 0.67). Conclusion GRAPPATINI is a feasible and robust T2 mapping sequence of the brain on intra- and intersubject level. The resulting sT2w depict brain lesions comparable to T2 TSE despite its inferior image quality.
Collapse
|
4
|
Raudner M, Toth DF, Schreiner MM, Hilbert T, Kober T, Juras V, Windhager R, Trattnig S. Synthetic T 2-weighted images of the lumbar spine derived from an accelerated T 2 mapping sequence: Comparison to conventional T 2w turbo spin echo. Magn Reson Imaging 2021; 84:92-100. [PMID: 34562566 DOI: 10.1016/j.mri.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the diagnostic usefulness of synthetic T2-weighted images of the lumbar spine derived from ten-fold undersampled k-space data using GRAPPATINI, a combination of a model-based approach for rapid T2 and M0 quantification (MARTINI) extended by generalized autocalibrating partial parallel acquistion (GRAPPA). MATERIALS AND METHODS Overall, 58 individuals (26 female, mean age 23.3 ± 8.1 years) were examined at 3 Tesla with sagittal and axial T2w turbo spin echo (TSE) sequences compared to synthetic T2-weighted contrasts derived at identical effective echo times and spatial resolutions. Two blinded readers graded disk degeneration and evaluated the lumbar intervertebral disks for present herniation or annular tear. One reader reassessed all studies after four weeks. Weighted kappa statistics were calculated to assess inter-rater and intra-rater agreement. Also, all studies were segmented manually by one reader to compute contrast ratios (CR) and contrast-to-noise ratios (CNR) of the nucleus pulposus and the annulus fibrosus. RESULTS Overall, the CRT2w was 4.45 ± 1.80 and CRT2synth was 4.71 ± 2.14. Both correlated (rsp = 0.768;p < 0.001) and differed (0.26 ± 1.38;p = 0.002) significantly. The CNRT2w was 1.73 ± 0.52 and CNRT2synth was 1.63 ± 0.50. Both correlated (rsp = 0.875;p < 0.001) and differed (-0.10 ± 0.25;p < 0.001) significantly. The inter-rater agreement was substantial to almost perfect (κ = 0.808-0.925) with the intra-rater agreement also substantial to almost perfect (κ = 0.862-0.963). The area under the curve of the receiver operating characteristics assessing disk herniation or annular tear ranged from 0.787 to 0.892. CONCLUSIONS This study concludes that synthetic images derived by GRAPPATINI can be used for clinical routine assessment with inter-rater and intra-rater agreements comparable to conventional T2w TSE.
Collapse
Affiliation(s)
- Marcus Raudner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Daniel F Toth
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Markus M Schreiner
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Austria
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vladimir Juras
- Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Bratislava, Slovakia
| | - Reinhard Windhager
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| |
Collapse
|
5
|
Coban G, Parlak S, Gumeler E, Altunbuker H, Konuşkan B, Karakaya J, Anlar B, Oguz KK. Synthetic MRI in Neurofibromatosis Type 1. AJNR Am J Neuroradiol 2021; 42:1709-1715. [PMID: 34266869 DOI: 10.3174/ajnr.a7214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Synthetic MRI enables the generation of various contrast-weighted images and quantitative data in a reasonable scanning time. We aimed to use synthetic MRI to assess the detection and underlying tissue characteristics of focal areas of signal intensity and normal-appearing brain parenchyma and morphometric alterations in the brains of patients with neurofibromatosis type 1. MATERIALS AND METHODS Conventional MR imaging and synthetic MRI were prospectively obtained from 19 patients with neurofibromatosis type 1 and 18 healthy controls. Two neuroradiologists independently evaluated focal areas of signal intensity on both conventional MR imaging and synthetic MRI. Additionally, automatically segmented volume calculations of the brain in both groups and quantitative analysis of myelin, including the focal areas of signal intensity and normal-appearing brain parenchyma, of patients with neurofibromatosis type 1 were performed using synthetic MRI. RESULTS The comparison of conventional MR imaging and synthetic MRI showed good correlation in the supratentorial region of the brain (κ = 0.82-1). Automatically segmented brain parenchymal volume, intracranial volume, and GM volumes were significantly increased in the patients with neurofibromatosis type 1 (P < .05). The myelin-correlated compound, myelin fraction volume, WM fraction volume, transverse relaxation rate, and longitudinal relaxation rate values were significantly decreased in focal areas of signal intensity on myelin and WM maps (P < .001); however, GM, GM fraction volume, and proton density values were significantly increased on the GM map (P < .001). CONCLUSIONS Synthetic MRI is a potential tool for the assessment of morphometric and tissue alterations as well as the detection of focal areas of signal intensity in patients with neurofibromatosis type 1 in a reasonable scan time.
Collapse
Affiliation(s)
- G Coban
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| | - S Parlak
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| | - E Gumeler
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| | - H Altunbuker
- Istanbul Il Ambulans Servisi Başhekimliği, (H.A.), Istanbul, Turkey
| | - B Konuşkan
- Department of Pediatric Neurology (B.K.), Mardin State Hospital, Mardin, Turkey
| | | | - B Anlar
- Pediatric Neurology (B.A.), Hacettepe University School of Medicine, Ankara, Turkey
| | - K K Oguz
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| |
Collapse
|
6
|
Li S, Liu J, Zhang F, Yang M, Zhang Z, Liu J, Zhang Y, Hilbert T, Kober T, Cheng J, Zhu J. Novel T2 Mapping for Evaluating Cervical Cancer Features by Providing Quantitative T2 Maps and Synthetic Morphologic Images: A Preliminary Study. J Magn Reson Imaging 2020; 52:1859-1869. [PMID: 32798294 DOI: 10.1002/jmri.27297] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The application value of T2 mapping in evaluating cervical cancer (CC) features remains unclear. PURPOSE To investigate the role of T2 values in evaluating CC classification, grade, and lymphovascular space invasion (LVSI) in comparison to apparent diffusion coefficient (ADC), and to compare synthetic T2 -weighted (T2 W) images calculated from T2 values to conventional T2 W images for CC staging. STUDY TYPE Retrospective. POPULATION Sixty-three patients with histopathologically confirmed CC. FIELD STRENGTH/SEQUENCE 3T, conventional T2 W turbo spin-echo, diffusion-weighted echo-planar, and accelerated T2 mapping sequence. ASSESSMENT T2 and ADC values between different pathological features of CC were compared. The diagnostic accuracies of conventional and synthetic T2 W images in staging were also compared. STATISTICAL TESTS Parameters were compared using an independent t-test, Wilcoxon signed-rank test, and the chi-square test. Receiver operating characteristic analysis was performed. RESULTS The T2 values varied significantly between well/moderately differentiated and poorly differentiated tumors ([92.8 ± 9.5 msec] vs. [83.8 ± 9.5 msec], P < 0.05) and between LVSI-positive and LVSI-negative CC ([82.2 ± 8.2 msec] vs. [93.9 ± 9.1 msec], P < 0.05). The ADC values showed a significant difference for grade ([0.76 ± 0.10 × 10-3 mm2 /s] vs. [0.65 ± 0.11 × 10-3 mm2 /s], P < 0.05) and no difference for LVSI status ([0.71 ± 0.11× 10-3 mm2 /s] vs. [0.73 ± 0.12× 10-3 mm2 /s], P = 0.472). There was no significant difference in T2 and ADC values between squamous cell carcinoma and adenocarcinoma (P = 0.378 and P = 0.661, respectively). In MRI staging, the conventional and synthetic T2 W images resulted in a similar accuracy (71% vs. 68%, P = 0.698). DATA CONCLUSION The accelerated T2 mapping sequence may facilitate grading and staging of CC by providing quantitative T2 maps and synthetic T2 W images in one acquisition. T2 values may be superior to ADC in predicting LVSI. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2 J. MAGN. RESON. IMAGING 2020;52:1859-1869.
Collapse
Affiliation(s)
- Shujian Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Liu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feifei Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Yang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zanxia Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Liu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd., Beijing, China
| |
Collapse
|