1
|
Marunaka Y. Physiological roles of chloride ions in bodily and cellular functions. J Physiol Sci 2023; 73:31. [PMID: 37968609 PMCID: PMC10717538 DOI: 10.1186/s12576-023-00889-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Physiological roles of Cl-, a major anion in the body, are not well known compared with those of cations. This review article introduces: (1) roles of Cl- in bodily and cellular functions; (2) the range of cytosolic Cl- concentration ([Cl-]c); (3) whether [Cl-]c could change with cell volume change under an isosmotic condition; (4) whether [Cl-]c could change under conditions where multiple Cl- transporters and channels contribute to Cl- influx and efflux in an isosmotic state; (5) whether the change in [Cl-]c could be large enough to act as signals; (6) effects of Cl- on cytoskeletal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological activity; (7) roles of cytosolic Cl- in cell proliferation; (8) Cl--regulatory mechanisms of ciliary motility; (9) roles of Cl- in sweet/umami taste receptors; (10) Cl--regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl- in regulation of epithelial Na+ transport; (12) relationship between roles of Cl- and H+ in body functions.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-Cho, Nishinokyo, Nakagyo-Ku, Kyoto, 604-8472, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
2
|
Yan L, Yun-Lin L, Yong-Ling L, Wei-Wei Z, Yue-Shan P. Alteration of GABAergic neurons and abnormality of NKCC1/KCC2 in focal cortical dysplasia (FCD) type Ⅱ lesions. Epilepsy Res 2023; 194:107180. [PMID: 37352729 DOI: 10.1016/j.eplepsyres.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND The current conclusions of molecular genetics still cannot satisfactorily explain the pathogenesis of focal cortical dysplasia (FCD) and the reason for drug resistance. The interneurons of GABA deserve attention. To observe the distribution and changes of GABAergic neurons and to explore the expression of cation chloride cotransporter NKCC1/KCC2 in focal cortical dysplasia (FCD) type II lesions is a highly significant job. METHODS The expressions of GAD67(a marker of active GABAergic neuron), NKCC1 and KCC2 were detected by immunohistochemistry and immunohistochemistry double staining in 10 cases of FCD Ⅱa and 10 cases of FCD Ⅱb. The number of GAD67 positive neurons was counted, and the average absorbance (IA) of NKCC1 positive expression was measured, using Image Pro-Plus7.0 software. The data were statistically analyzed. RESULTS The density of GABAergic neuron in focal dysplastic regions was significantly lower than that in the histologically "normal" cerebral cortex, regions from the same specimen (p < 0.0001, t-test). Compared to the NKCC1 staining intensity of neurons in the control group (measuring 1000 cells each), the IA value of dysmorphic neurons was significantly increased (p < 0.05, t'-test Cochran & Cox method). Intracytoplasmic concentration of KCC2 was evident in dysmorphic neurons but not in the other mature neurons. Most of the balloon cells were negative for NKCC1, except for few balloon cells showing sparse colored particles. The expression of KCC2 was negative in all balloon cells. CONCLUSIONS The changes in the expression of NKCC1 and KCC2 may indicate that dysmorphic neurons were in a state similar to that of immature neurons. This state may be related to the abnormal electrophysiology of epilepsy. The difference between the number of GAD67 positive cells in the lesion site and the remote site of the same case may be an evaluation index of the effectiveness of surgery.
Collapse
Affiliation(s)
- Li Yan
- Department of Pathology, Haidian Hospital, Haidian District of Peking University Third Hospital, Beijing, China
| | - Li Yun-Lin
- Department of Neurosurgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Liu Yong-Ling
- Department of Pathology, Haidian Hospital, Haidian District of Peking University Third Hospital, Beijing, China
| | - Zhang Wei-Wei
- Department of Pathology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Piao Yue-Shan
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China.
| |
Collapse
|
3
|
Watanabe K, Ishibashi M, Suzuki T, Otsuka A, Yoshimura N, Miyake H, Fukuda A. Therapeutic effects of KCC2 chloride transporter activation on detrusor overactivity in mice with spinal cord injury. Am J Physiol Renal Physiol 2023; 324:F353-F361. [PMID: 36656987 DOI: 10.1152/ajprenal.00271.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study aimed to clarify whether downregulation of K+-Cl- cotransporter 2 (KCC2) in the sacral parasympathetic nucleus (SPN) of the lumbosacral spinal cord, from which the efferent pathway innervating the bladder originates, causes cellular hyperexcitability and triggers detrusor overactivity (DO) in spinal cord injury (SCI). SCI was produced by Th8-9 spinal cord transection in female C57BL/6 mice. At 4 wk after SCI, CLP290, a KCC2 activator, was administered, and cystometry was performed. Thereafter, neuronal activity with c-fos staining and KCC2 expression in cholinergic preganglionic parasympathetic neurons in the SPN was examined using immunohistochemistry. Firing properties of neurons in the SPN region were evaluated by extracellular recordings in the spinal cord slice preparations. DO evident as nonvoiding contractions was significantly reduced by CLP290 treatment in SCI mice. The number of c-fos-positive cells and coexpression of c-fos in choline acetyltransferase-positive cells were decreased in the SPN region of the SCI CLP290-treated group versus the SCI vehicle-treated group. KCC2 immunoreactivity was present on the cell membrane of SPN neurons and normalized fluorescence intensity of KCC2 in choline acetyltransferase-positive SPN neurons was decreased in the SCI vehicle-treated group versus the spinal intact vehicle-treated group but recovered in the SCI CLP290-treated group. Extracellular recordings showed that CLP290 suppressed the high-frequency firing activity of SPN neurons in SCI mice. These results indicated that SCI-induced DO is associated with downregulation of KCC2 in preganglionic parasympathetic neurons and that activation of KCC2 transporters can reduce DO, increase KCC2 expression in preganglionic parasympathetic neurons, and decrease neuronal firing of SPN neurons in SCI mice.NEW & NOTEWORTHY This study is the first report to suggest that activation of the Cl- transporter K+-Cl- cotransporter 2 may be a therapeutic modality for the treatment of spinal cord injury-induced detrusor overactivity by targeting bladder efferent pathways.
Collapse
Affiliation(s)
- Kyohei Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Suzuki
- Department of Urology, Kanagawa Rehabilitation Hospital, Atsugi, Japan
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Atsushi Otsuka
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
5
|
Ragot A, Luhmann HJ, Dipper-Wawra M, Heinemann U, Holtkamp M, Fidzinski P. Pathology-selective antiepileptic effects in the focal freeze-lesion rat model of malformation of cortical development. Exp Neurol 2021; 343:113776. [PMID: 34058228 DOI: 10.1016/j.expneurol.2021.113776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 01/29/2023]
Abstract
Malformations of cortical development (MCD) represent a group of rare diseases with severe clinical presentation as epileptic and pharmacoresistant encephalopathies. Morphological studies in tissue from MCD patients have revealed reduced GABAergic efficacy and increased intracellular chloride concentration in neuronal cells as important pathophysiological mechanisms in MCD. Also, in various animal models, alterations of GABAergic inhibition have been postulated as a predominant factor contributing to perilesional hyperexcitability. Along with this line, the NKCC1 inhibitor bumetanide has been postulated as a potential drug for treatment of epilepsy, mediating its antiepileptic effect by reduction of the intracellular chloride and increased inhibitory efficacy of GABAergic transmission. In the present study, we focused on the focal freeze-lesion model of MCD to compare antiepileptic drugs with distinct mechanisms of action, including NKCC1 inhibition by bumetanide. For this purpose, we combined electrophysiological and optical methods in slice preparations and assessed the properties of seizure like events (SLE) induced by 4-aminopyridine. In freeze-lesioned but not control slices, SLE onset was confined to the perilesional area, confirming that this region is hyperexcitable and likely triggers pathological activity. Bumetanide selectively reduced epileptic activity in lesion-containing slices but not in slices from sham-treated control rats. Moreover, bumetanide caused a shift in the SLE onset site away from the perilesional area. In contrast, effects of other antiepileptic drugs including carbamazepine, lacosamide, acezatolamide and zonisamide occurred mostly independently of the lesion and did not result in a shift of the onset region. Our work adds evidence for the functional relevance of chloride homeostasis in the pathophysiology of microgyrus formation as represented in the focal freeze-lesion model. Further studies in different MCD models and human tissue will be required to validate the effects across different MCD subtypes and species and to assess the translational value of our findings.
Collapse
Affiliation(s)
- Aliénor Ragot
- Charité - Universitätsmedizin Berlin, Clinical and Experimental Epileptology, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Dipper-Wawra
- Charité - Universitätsmedizin Berlin, Clinical and Experimental Epileptology, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
| | - Uwe Heinemann
- Charité - Universitätsmedizin Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Holtkamp
- Charité - Universitätsmedizin Berlin, Clinical and Experimental Epileptology, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany; Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Pawel Fidzinski
- Charité - Universitätsmedizin Berlin, Clinical and Experimental Epileptology, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany; Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany; Berlin Institute of Health at Charité -Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
6
|
Blauwblomme T, Dossi E, Pellegrino C, Goubert E, Iglesias BG, Sainte-Rose C, Rouach N, Nabbout R, Huberfeld G. Gamma-aminobutyric acidergic transmission underlies interictal epileptogenicity in pediatric focal cortical dysplasia. Ann Neurol 2019; 85:204-217. [PMID: 30597612 DOI: 10.1002/ana.25403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Dysregulation of γ-aminobutyric acidergic (GABAergic) transmission has been reported in lesional acquired epilepsies (gliomas, hippocampal sclerosis). We investigated its involvement in a developmental disorder, human focal cortical dysplasia (FCD), focusing on chloride regulation driving GABAergic signals. METHODS In vitro recordings of 47 human cortical acute slices from 11 pediatric patients who received operations for FCD were performed on multielectrode arrays. GABAergic receptors and chloride regulators were pharmacologically modulated. Immunostaining for chloride cotransporter KCC2 and interneurons were performed on recorded slices to correlate electrophysiology and expression patterns. RESULTS FCD slices retain intrinsic epileptogenicity. Thirty-six of 47 slices displayed spontaneous interictal discharges, along with a pattern specific to the histological subtypes. Ictal discharges were induced in proepileptic conditions in 6 of 8 slices in the areas generating spontaneous interictal discharges, with a transition to seizure involving the emergence of preictal discharges. Interictal discharges were sustained by GABAergic signaling, as a GABAA receptor blocker stopped them in 2 of 3 slices. Blockade of NKCC1 Cl- cotransporters further controlled interictal discharges in 9 of 12 cases, revealing a Cl- dysregulation affecting actions of GABA. Immunohistochemistry highlighted decreased expression and changes in KCC2 subcellular localization and a decrease in the number of GAD67-positive interneurons in regions generating interictal discharges. INTERPRETATION Altered chloride cotransporter expression and changes in interneuron density in FCD may lead to paradoxical depolarization of pyramidal cells. Spontaneous interictal discharges are consequently mediated by GABAergic signals, and targeting chloride regulation in neurons may be considered for the development of new antiepileptic drugs. Ann Neurol 2019; 1-14 ANN NEUROL 2019;85:204-217.
Collapse
Affiliation(s)
- Thomas Blauwblomme
- APHP, Department of Pediatric Neurosurgery, Hospital Necker, Paris, France.,Université René Descartes. PRES Sorbonne Paris Cité, Paris, France.,INSERM U1129, Infantile Epilepsies and Brain Plasticity, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | | | - Beatriz Gal Iglesias
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea, Madrid, Spain
| | - Christian Sainte-Rose
- APHP, Department of Pediatric Neurosurgery, Hospital Necker, Paris, France.,Université René Descartes. PRES Sorbonne Paris Cité, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Rima Nabbout
- Université René Descartes. PRES Sorbonne Paris Cité, Paris, France.,APHP, Department of Neuropediatrics, Hospital Necker, Paris, France
| | - Gilles Huberfeld
- INSERM U1129, Infantile Epilepsies and Brain Plasticity, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Sorbonne University, AP-HP, Department of Neurophysiology, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
7
|
Theisen U, Hey S, Hennig CD, Schnabel R, Köster RW. Glycine is able to induce both a motility speed in- and decrease during zebrafish neuronal migration. Commun Integr Biol 2018; 11:1-7. [PMID: 30214676 PMCID: PMC6132429 DOI: 10.1080/19420889.2018.1493324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Various neurotransmitters influence neuronal migration in the developing zebrafish hindbrain. Migrating tegmental hindbrain nuclei neurons (THNs) are governed by depolarizing neurotransmitters (acetylcholine and glutamate), and glycine. In mature neurons, glycine binds to its receptor to hyperpolarize cells. This effect depends on the co-expression of the solute carrier KCC2. Immature precursors, however, typically express NKCC1 instead of KCC2, leading to membrane depolarization upon glycine receptor activation. As neuronal migration occurs in neurons after leaving the cell cycle and before terminal differentiation, we hypothesized that the switch from NKCC1 to KCC2 expression could alter the effect of glycine on THN migration. We tested this notion using in vivo cell tracking, overexpression of glycine receptor mutations and whole mount in situ hybridization. We summarize our findings in a speculative model, combining developmental age, glycine receptor strength and solute carrier expression to describe the effect of glycine on the migration of THNs.
Collapse
Affiliation(s)
- Ulrike Theisen
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Sven Hey
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | | | - Ralf Schnabel
- TU Braunschweig, Institute for Genetics, Braunschweig, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| |
Collapse
|
8
|
Kielbinski M, Gzielo K, Soltys Z. Review: Roles for astrocytes in epilepsy: insights from malformations of cortical development. Neuropathol Appl Neurobiol 2018; 42:593-606. [PMID: 27257021 DOI: 10.1111/nan.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
Abstract
Malformations of cortical development (MCDs), such as cortical dysplasia and tuberous sclerosis complex, are common causes of intractable epilepsy, especially in paediatric patients. Recently, mounting evidence points to a common pathology of these disorders. Hyperactivation of mammalian target of rapamycin (mTOR) has been proposed as a central mechanism in most, if not all, MCDs. The transition from mTOR hyperactivation and cellular abnormalities to large-scale functional changes and seizure is, however, not fully understood. In this article we set out to review currently available information regarding MCD pathology, focusing on glial cells - especially astrocytes - and their interactions with the brain vascular system. A large body of evidence points to these elements as potential targets in MCD. Here, we attempt to provide a review of this evidence and propose some hypotheses regarding the possible chain of events linking primary glial dysfunction and epilepsy. We focus on extracellular matrix remodelling, blood-brain barrier leakage and failure of astrocyte-dependent removal of extracellular debris. We posit that the failure of these systems results in a chronically pro-inflammatory environment, maintaining local astrocytes in a state of gliosis, with increased susceptibility to seizures as a consequence.
Collapse
Affiliation(s)
- M Kielbinski
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - K Gzielo
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Mateen BA, Hill CS, Biddie SC, Menon DK. DNA Methylation: Basic Biology and Application to Traumatic Brain Injury. J Neurotrauma 2017; 34:2379-2388. [DOI: 10.1089/neu.2017.5007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Bilal A. Mateen
- Division of Medicine, University College London, London, United Kingdom
| | - Ciaran S. Hill
- John van Geest Centre for Brain Repair, School of Clinical Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Simon C. Biddie
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- John van Geest Centre for Brain Repair, School of Clinical Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Sun QQ, Zhou C, Yang W, Petrus D. Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia. Epilepsia 2016; 57:1581-1593. [PMID: 27527919 DOI: 10.1111/epi.13501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine if mice with focal cortical dysplasia (FCD) develop spontaneous epileptic seizures and, if so, determine the key electroencephalography (EEG) features. METHODS Unilateral single freeze lesions to the S1 region (SFLS1R) were made in postnatal day 0-1 pups to induce a neocortical microgyrus in the right cortical hemisphere. Continuous 24-h recordings with intracranial EEG electrodes and behavioral tests were performed in adult SFLS1R and sham-control mice to assess neurologic status. RESULTS A high percentage of adult SFLS1R animals (89%, 40/45) exhibited at least one or more spontaneous nonconvulsive seizure events over the course of 24 h. Of these animals, 60% (27/45) presented with a chronic seizure state that was persistent throughout the recording session, consisting of bursts of rhythmic high-amplitude spike-wave activities and primarily occurring during periods of slow-wave sleep. In comparison, none of the control, age-matched, mice (0/12) developed seizures. The epileptic discharge pattern closely resembled a pattern of continuous spike-waves during slow-wave sleep (CSWS) of the human syndrome described as an electrical status epilepticus during slow-wave sleep (ESES). Key findings in the SFLS1R model indicated that the observed CSWS (1) were more prevalent in female (18/23) versus male (9/22, p < 0.05), (2) were strongest in the right S1 region although generalized to other brain regions, (3) were associated with significant cognitive and behavioral deficits, (4) were temporarily alleviated by ethosuximide treatment or optogenetic activation of cortical γ-aminobutyric acid (GABA)ergic neurons, and (5) theta and alpha band rhythms may play a key role in the generalization of spike-wave activities. SIGNIFICANCE This is the first report of an in vivo animal FCD model that induces chronic spontaneous electrographic brain seizures. Further characterization of the abnormal oscillations in this mouse model may lead to a better understanding of the mechanisms of CSWS/ESES.
Collapse
Affiliation(s)
- Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A.
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| | - Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| | - Daniel Petrus
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, U.S.A
| |
Collapse
|
11
|
Hanson E, Danbolt NC, Dulla CG. Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust. Neurobiol Dis 2016; 89:157-68. [PMID: 26875663 PMCID: PMC4794447 DOI: 10.1016/j.nbd.2016.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Developmental cortical malformations (DCMs) are linked with severe epilepsy and are caused by both genetic and environmental insults. DCMs include several neurological diseases, such as focal cortical dysplasia, polymicrogyria, schizencephaly, and others. Human studies have implicated astrocyte reactivity and dysfunction in the pathophysiology of DCMs, but their specific role is unknown. As astrocytes powerfully regulate glutamate neurotransmission, and glutamate levels are known to be increased in human epileptic foci, understanding the role of astrocytes in the pathological sequelae of DCMs is extremely important. Additionally, recent studies examining astrocyte glutamate uptake in DCMs have reported conflicting results, adding confusion to the field. In this study we utilized the freeze lesion (FL) model of DCM, which is known to induce reactive astrocytosis and cause significant changes in astrocyte morphology, proliferation, and distribution. Using whole-cell patch clamp recording from astrocytes, we recorded both UV-uncaging and synaptically evoked glutamate transporter currents (TCs), widely accepted assays of functional glutamate transport by astrocytes. With this approach, we set out to test the hypothesis that astrocyte membrane properties and glutamate transport were disrupted in this model of DCM. Though we found that the developmental maturation of astrocyte membrane resistance was disrupted by FL, glutamate uptake by individual astrocytes was robust throughout FL development. Interestingly, using an immunolabeling approach, we observed spatial and developmental differences in excitatory amino acid transporter (EAAT) expression in FL cortex. Spatially specific differences in EAAT2 (GLT-1) and EAAT1 (GLAST) expression suggest that the relative contribution of each EAAT to astrocytic glutamate uptake may be altered in FL cortex. Lastly, we carefully analyzed the amplitudes and onset times of both synaptically- and UV uncaging-evoked TCs. We found that in the FL cortex, synaptically-evoked, but not UV uncaging-evoked TCs, were larger in amplitude. Additionally, we found that the amount of electrical stimulation required to evoke a synaptic TC was significantly reduced in the FL cortex. Both of these findings are consistent with increased excitatory input to the FL cortex, but not with changes in how individual astrocytes remove glutamate. Taken together, our results demonstrate that the maturation of astrocyte membrane resistance, local distribution of glutamate transporters, and glutamatergic input to the cortex are altered in the FL model, but that single-cell astrocytic glutamate uptake is robust.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Neuroscience Program, Tufts Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, N-0317 Oslo, Norway
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Neuroscience Program, Tufts Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
12
|
Kang SK, Markowitz GJ, Kim ST, Johnston MV, Kadam SD. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters. Front Cell Neurosci 2015; 9:173. [PMID: 26029047 PMCID: PMC4429249 DOI: 10.3389/fncel.2015.00173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/18/2015] [Indexed: 11/13/2022] Open
Abstract
Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Geoffrey J Markowitz
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Shin Tae Kim
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA
| | - Michael V Johnston
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pediatrics, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
13
|
Models of cortical malformation--Chemical and physical. J Neurosci Methods 2015; 260:62-72. [PMID: 25850077 DOI: 10.1016/j.jneumeth.2015.03.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model causes microgyria and heterotopia. Intraperitoneal injections of carmustine 1-3-bis-chloroethyl-nitrosurea (BCNU) to pregnant rats produces laminar disorganization, heterotopias and cytomegalic neurons. The ibotenic acid model induces focal cortical malformations, which resemble human microgyria and ulegyria. Cortical dysplasia can be also observed following prenatal exposure to ethanol, cocaine or antiepileptic drugs. All these models of cortical malformations are characterized by a pronounced hyperexcitability, few of them also produce spontaneous epileptic seizures. This dysfunction results from an impairment in GABAergic inhibition and/or an increase in glutamatergic synaptic transmission. The cortical region initiating or contributing to this hyperexcitability may not necessarily correspond to the site of the focal malformation. In some models wide-spread molecular and functional changes can be observed in remote regions of the brain, where they cause pathophysiological activities. This paper gives an overview on different animal models of cortical malformations, which are mostly used in rodents and which mimic the pathology and to some extent the pathophysiology of neuronal migration disorders associated with epilepsy in humans.
Collapse
|
14
|
Jin X, Jiang K, Prince DA. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria. J Neurophysiol 2014; 112:1703-13. [PMID: 24990567 DOI: 10.1152/jn.00854.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry.
Collapse
Affiliation(s)
- Xiaoming Jin
- Stark Neurosciences Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kewen Jiang
- Stark Neurosciences Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana; Department of Neurology, Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
15
|
Wang T, Kumada T, Morishima T, Iwata S, Kaneko T, Yanagawa Y, Yoshida S, Fukuda A. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria. Cereb Cortex 2014; 24:1088-101. [PMID: 23246779 PMCID: PMC3948493 DOI: 10.1093/cercor/bhs375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatsuro Kumada
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Toshitaka Morishima
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satomi Iwata
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Japan Science and Technology Agency, CREST, Tokyo 102-0075, Japan and
| | - Sachiko Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
16
|
Luhmann HJ, Kilb W, Clusmann H. Malformations of cortical development and neocortical focus. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:35-61. [PMID: 25078498 DOI: 10.1016/b978-0-12-418693-4.00003-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Bell A, Jacobs KM. Early susceptibility for epileptiform activity in malformed cortex. Epilepsy Res 2013; 108:241-50. [PMID: 24368129 DOI: 10.1016/j.eplepsyres.2013.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 02/08/2023]
Abstract
Despite early disruption of developmental processes, hyperexcitability is often delayed after the induction of cortical malformations. In the freeze-lesion model of microgyria, interictal activity cannot be evoked in vitro until postnatal day (P)12, despite the increased excitatory afferent input to the epileptogenic region by P10. In order to determine the most critical time period for assessment of epileptogenic mechanisms, here we have used low-Mg(2+) aCSF as a second hit after the neonatal freeze lesion to examine whether there is an increased susceptibility prior to the overt expression of epileptiform activity. This two-hit model produced increased interictal activity in freeze-lesioned relative to control cortex. We quantified this with measures of incidence by sweep, time to first epileptiform event, and magnitude of late activity. The increase was present even in the P7-9 survival group, before increased excitatory afferents invade, as well as in the P10-11 and P12-15 groups. In our young adult group (P28-36), the amount of interictal activity did not differ, but only the lesioned cortices produced ictal activity. We conclude that epileptogenic processes begin early and continue beyond the expression of interictal activity, with different time courses for susceptibility for interictal and ictal activity.
Collapse
Affiliation(s)
- Andrew Bell
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
18
|
Fukuda A, Wang T. A perturbation of multimodal
GABA
functions underlying the formation of focal cortical malformations: Assessments by using animal models. Neuropathology 2013; 33:480-6. [DOI: 10.1111/neup.12021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Atsuo Fukuda
- Department of Neurophysiology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Tianying Wang
- Department of Neurophysiology Hamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
19
|
Dulla CG, Tani H, Brill J, Reimer RJ, Huguenard JR. Glutamate biosensor imaging reveals dysregulation of glutamatergic pathways in a model of developmental cortical malformation. Neurobiol Dis 2012; 49:232-46. [PMID: 22982711 DOI: 10.1016/j.nbd.2012.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 08/27/2012] [Accepted: 09/01/2012] [Indexed: 12/26/2022] Open
Abstract
Cortical malformations can cause intractable epilepsy, but the underlying epileptogenic mechanisms are poorly understood. We used high-speed glutamate biosensor imaging to ask how glutamatergic signaling is altered in cortical malformations induced by neonatal freeze-lesions (FL). In non-lesion neocortical slices from 2 to 8week old rats, evoked glutamate signals were symmetrical in the medio-lateral axis and monotonic, correlating with simple, brief (≈50ms) local field potentials (LFPs). By contrast, in FL cortex glutamate signals were prolonged, increased in amplitude, and polyphasic, which paralleled a prolongation of the LFP. Using glutamate biosensor imaging, we found that glutamate signals propagated throughout large areas of FL cortex and were asymmetric (skewed toward the lesion). Laminar analysis demonstrated a shift in the region of maximal glutamate release toward superficial layers in FL cortex. The ability to remove exogenous glutamate was increased within the FL itself but was decreased in immediately adjacent regions. There were corresponding alterations in astrocyte density, with an increase within the lesion and a decrease in deep cortical layers surrounding the lesion. These findings demonstrate both network connectivity and glutamate metabolism are altered in this cortical malformation model and suggests that the regional ability of astrocytes to remove released glutamate may be inversely related to local excitability.
Collapse
Affiliation(s)
- C G Dulla
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - H Tani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - J Brill
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - R J Reimer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - J R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Bazelot M, Simonnet J, Dinocourt C, Bruel-Jungerman E, Miles R, Fricker D, Francis F. Cellular anatomy, physiology and epileptiform activity in the CA3 region of Dcx knockout mice: a neuronal lamination defect and its consequences. Eur J Neurosci 2012; 35:244-56. [PMID: 22250815 DOI: 10.1111/j.1460-9568.2011.07962.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report data on the neuronal form, synaptic connectivity, neuronal excitability and epileptiform population activities generated by the hippocampus of animals with an inactivated doublecortin gene. The protein product of this gene affects neuronal migration during development. Human doublecortin (DCX) mutations are associated with lissencephaly, subcortical band heterotopia, and syndromes of intellectual disability and epilepsy. In Dcx(-/Y) mice, CA3 hippocampal pyramidal cells are abnormally laminated. The lamination defect was quantified by measuring the extent of the double, dispersed or single pyramidal cell layer in the CA3 region of Dcx(-/Y) mice. We investigated how this abnormal lamination affected two groups of synapses that normally innervate defined regions of the CA3 pyramidal cell membrane. Numbers of parvalbumin (PV)-containing interneurons, which contact peri-somatic sites, were not reduced in Dcx(-/Y) animals. Pyramidal cells in double, dispersed or single layers received PV-containing terminals. Excitatory mossy fibres which normally target proximal CA3 pyramidal cell apical dendrites apparently contact CA3 cells of both layers in Dcx(-/Y) animals but sometimes on basilar rather than apical dendrites. The dendritic form of pyramidal cells in Dcx(-/Y) animals was altered and pyramidal cells of both layers were more excitable than their counterparts in wild-type animals. Unitary inhibitory field events occurred at higher frequency in Dcx(-/Y) animals. These differences may contribute to a susceptibility to epileptiform activity: a modest increase in excitability induced both interictal and ictal-like discharges more effectively in tissue from Dcx(-/Y) mice than from wild-type animals.
Collapse
Affiliation(s)
- Michael Bazelot
- INSERM UMR-S975, CRICM, CHU Pitié-Salpêtrière, UPMC, 105 boulevard de l'Hôpital, Paris 75013, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The incidence of epilepsy is at its highest in childhood and seizures can persist for a lifetime. As brain tissue from pediatric patients with epilepsy is rarely available, the analysis of molecular and cellular changes during epileptogenesis, which could serve as targets for treatment approaches, has to rely largely on the analysis of tissue from animal models. However, these data have to be analyzed in the context of the developmental stage when the insult occurs. Here we review the current status of the available animal models, the molecular analysis done in these models, as well as treatment attempts to prevent epileptogenesis in the immature brain. Considering that epilepsy is one of the major childhood neurological diseases, it is remarkable how little is known on epileptogenesis in the immature brain at a molecular level. It is a true challenge for the future to expand the armamentarium of clinically relevant animal models, and systematic analysis of molecular and cellular data to enhance the probability of developing syndrome specific antiepileptogenic treatments and biomarkers for acquired pediatric epileptogenesis.
Collapse
|
22
|
Gómez-Lira G, Mendoza-Torreblanca JG, Granados-Rojas L. Ketogenic diet does not change NKCC1 and KCC2 expression in rat hippocampus. Epilepsy Res 2011; 96:166-71. [PMID: 21684720 DOI: 10.1016/j.eplepsyres.2011.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 11/19/2022]
Abstract
In control rats, we examined the effects of ketogenic diet on NKCC1 and KCC2 expression levels in hippocampus. Neither the number of NKCC1 immunoreactive cells nor the intensity of labeling of KCC2 was found to modify in hippocampus of the rats after ketogenic diet treatment. These results indicate that ketogenic diet by itself does not modify the expression of these cation chloride cotransporters.
Collapse
Affiliation(s)
- Gisela Gómez-Lira
- Laboratorio de Neuromorfometría, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Del. Coyoacán, México D.F. 04530, México.
| | | | | |
Collapse
|
23
|
Altered GABA signaling in early life epilepsies. Neural Plast 2011; 2011:527605. [PMID: 21826277 PMCID: PMC3150203 DOI: 10.1155/2011/527605] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 01/13/2023] Open
Abstract
The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain.
Collapse
|
24
|
Shimizu-Okabe C, Tanaka M, Matsuda K, Mihara T, Okabe A, Sato K, Inoue Y, Fujiwara T, Yagi K, Fukuda A. KCC2 was downregulated in small neurons localized in epileptogenic human focal cortical dysplasia. Epilepsy Res 2011; 93:177-84. [PMID: 21256718 DOI: 10.1016/j.eplepsyres.2010.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Focal cortical dysplasia (FCD), which is characterized histologically by disorganized cortical lamination and large abnormal cells, is one of the major causes of intractable epilepsies. γ-aminobutyric acid (GABA)(A) receptor-mediated synchronous depolarizing potentials have been observed in FCD tissue. Since alterations in Cl(-) homeostasis might underlie these depolarizing actions of GABA, cation-Cl(-) cotransporters could play critical roles in the generation of these abnormal actions. We examined the expression patterns of NKCC1 and KCC2 by in situ hybridization histochemistry and immunohistochemistry in FCD tissue obtained by surgery from patients with intractable epilepsy. KCC2 mRNA and protein were expressed not only in non-dysplastic neurons in histologically normal portions located in the periphery of the excised cortex, but also in dysplastic cells in FCD tissue. The levels of KCC2 mRNA and protein were significantly decreased in the neurons around large abnormal neurons (giant neurons), but not in giant neurons, compared with non-dysplastic neurons. The neurons localized only around giant neurons significantly smaller than non-dysplastic neurons. However NKCC1 expression did not differ among these cell types. These results suggest that the intracellular Cl(-) concentration ([Cl(-)](i)) of small neurons might increase, so that depolarizing GABA actions could occur in the FCD tissue of epileptic foci.
Collapse
Affiliation(s)
- Chigusa Shimizu-Okabe
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in visual cortex prevents the maturation of thalamocortical synapses, the maturation of inhibition in layer 4, the development of orientation selective responses and the formation of ocular dominance columns. SPn removal also alters ocular dominance plasticity during the critical period. Therefore, SPns are a key regulator of cortical development and plasticity. SPns are vulnerable to injury during prenatal stages and might provide a crucial link between brain injury in development and later cognitive malfunction.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
26
|
Altered intrinsic properties of neuronal subtypes in malformed epileptogenic cortex. Brain Res 2010; 1374:116-28. [PMID: 21167139 DOI: 10.1016/j.brainres.2010.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
Abstract
Neuronal intrinsic properties control action potential firing rates and serve to define particular neuronal subtypes. Changes in intrinsic properties have previously been shown to contribute to hyperexcitability in a number of epilepsy models. Here we examined whether a developmental insult producing the cortical malformation of microgyria altered the identity or firing properties of layer V pyramidal neurons and two interneuron subtypes. Trains of action potentials were elicited with a series of current injection steps during whole cell patch clamp recordings. Cells in malformed cortex identified as having an apical dendrite had firing patterns similar to control pyramidal neurons. The duration of the second action potential in the train was increased in paramicrogyral (PMG) pyramidal cells, suggesting that these cells may be in an immature state, as was previously found for layer II/III pyramidal neurons. Based on stereotypical firing patterns and other intrinsic properties, fast-spiking (FS) and low threshold-spiking (LTS) interneuron subpopulations were clearly identified in both control and malformed cortex. Most intrinsic properties measured in malformed cortex were unchanged, suggesting that subtype identity is maintained. However, LTS interneurons in lesioned cortex had increased maximum firing frequency, decreased initial afterhyperpolarization duration, and increased total adaptation ratio compared to control LTS cells. FS interneurons demonstrated decreased maximum firing frequencies in malformed cortex compared to control FS cells. These changes may increase the efficacy of LTS while decreasing the effectiveness of FS interneurons. These data indicate that differential alterations of individual neuronal subpopulations may endow them with specific characteristics that promote epileptogenesis.
Collapse
|
27
|
Lee HA, Hong SH, Kim JW, Jang IS. Possible involvement of DNA methylation in NKCC1 gene expression during postnatal development and in response to ischemia. J Neurochem 2010; 114:520-9. [PMID: 20456012 DOI: 10.1111/j.1471-4159.2010.06772.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In CNS, GABA(A) receptor-mediated responses switch from depolarization to hyperpolarization during postnatal development. This switch is mediated by developmental down-regulation of inwardly directed Na(+)-K(+)-2Cl(-) co-transporter type 1 (NKCC1) and up-regulation of outwardly directed K(+)-Cl(-) co-transporter type 2. While several factors have been shown to regulate K(+)-Cl(-) co-transporter type 2 expression, little is known about the mechanisms by which the expression of NKCC1 is regulated during postnatal development. Here, we report a novel epigenetic mechanism underlying the developmental regulation of NKCC1 gene expression in the rat cerebral cortex. In vitro DNA methylation of the NKCC1 promoter region, which contains a high density of cytosine-phosphodiester-guanine islands, significantly decreased the expression of NKCC1 mRNA, and the degree of methylation of the NKCC1 promoter region significantly increased during postnatal development. In addition, treatment with 5-aza-2'-deoxycytidine, a specific DNA methyltransferase inhibitor, elicited an increase in the expression of NKCC1 mRNA and protein in cortical slice cultures. Focal ischemic injury induced by the occlusion of the middle cerebral artery led to the re-expression of NKCC1 mRNA and protein even in the mature rat cortex. The re-expression of NKCC1 mRNA and protein in the injured cerebral cortex was related to a decrease in the methylation status of the NKCC1 promoter region. Our results indicate that epigenetic mechanisms, such as DNA methylation, might be involved in the regulation of NKCC1 gene expression during postnatal development as well as under pathological conditions.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
28
|
Robinson S, Mikolaenko I, Thompson I, Cohen ML, Goyal M. Loss of cation-chloride cotransporter expression in preterm infants with white matter lesions: implications for the pathogenesis of epilepsy. J Neuropathol Exp Neurol 2010; 69:565-72. [PMID: 20467335 PMCID: PMC3165026 DOI: 10.1097/nen.0b013e3181dd25bc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epilepsy associated with preterm birth is often refractory to anticonvulsants. Children who are born preterm are also prone to cognitive delay and behavioral problems. Brains from these children often show diffuse abnormalities in cerebral circuitry that is likely caused by disrupted development during critical stages of cortical formation. To test the hypothesis that prenatal injury impairs the developmental switch of gamma-amino butyric acid (GABA)ergic synapses from excitatory to inhibitory, thereby disrupting cortical circuit formation and predisposing to epilepsy, we used immunohistochemistry to compare the expression of cation-chloride transporters that developmentally regulate postsynaptic GABAergic discharges in postmortem cerebral samples from infants born preterm with known white matter injury (n = 11) with that of controls with minimal white matter gliosis (n = 7). Controls showed the expected developmental expression of cation-chloride transporters NKCC1 and KCC2 and ofcalretinin, a marker of a GABAergic neuronal subpopulation. Samples from infants with white matter damage showed a significant loss of expression of both NKCC1 and KCC2 in subplate and white matter. By contrast, there were no significant differences in total cell number or glutamate transporter VGLUT1 expression. Together, these novel findings suggest a molecular mechanism involved in the disruption of a critical stage of cerebral circuit development after brain injury from preterm birth that may predispose to epilepsy.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Divisions of Pediatric Neurosurgery, Neurology, Rainbow Babies & Children's Hospital, 11100 Euclid Ave, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
29
|
Brill J, Huguenard JR. Enhanced infragranular and supragranular synaptic input onto layer 5 pyramidal neurons in a rat model of cortical dysplasia. ACTA ACUST UNITED AC 2010; 20:2926-38. [PMID: 20338974 DOI: 10.1093/cercor/bhq040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cortical dysplasias frequently underlie neurodevelopmental disorders and epilepsy. Rats with a neonatally induced cortical microgyrus [freeze-lesion (FL)], a model of human polymicrogyria, display epileptiform discharges in vitro. We probed excitatory and inhibitory connectivity onto neocortical pyramidal neurons in layers 2/3 and 5 of postnatal day 16-22 rats, approximately 1-2 mm lateral of the lesion, using laser scanning photostimulation (LSPS)/glutamate uncaging. Excitatory input from deep and supragranular layers to layer 5 pyramidal cells was greater in FL cortex, while no significant differences were seen in layer 2/3 cells. The increased input was due to a greater number of LSPS-evoked excitatory postsynaptic currents (EPSCs), without differences in amplitude or kinetics. Inhibitory input was increased in a region-specific manner in pyramidal cells in FL cortex, due to an increased inhibitory postsynaptic current (IPSC) amplitude. Connectivity within layer 5, parts of which are destroyed during lesioning, was more severely affected than connectivity in layer 2/3. Thus, we observed 2 distinct mechanisms of altered synaptic input: 1) increased EPSC frequency suggesting an increased number of excitatory synapses and 2) higher IPSC amplitude, suggesting an increased strength of inhibitory synapses. These increases in both excitatory and inhibitory connectivity may limit the extent of circuit hyperexcitability.
Collapse
Affiliation(s)
- Julia Brill
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
30
|
Kanold PO. Subplate neurons: crucial regulators of cortical development and plasticity. Front Neuroanat 2009; 3:16. [PMID: 19738926 PMCID: PMC2737439 DOI: 10.3389/neuro.05.016.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 08/03/2009] [Indexed: 01/14/2023] Open
Abstract
The developing cerebral cortex contains a distinct class of cells, subplate neurons, which form one of the first functional cortical circuits. Subplate neurons reside in the cortical white matter, receive thalamic inputs and project into the developing cortical plate, mostly to layer 4. Subplate neurons are present at key time points during development. Removal of subplate neurons profoundly affects cortical development. Subplate removal in visual cortex prevents the maturation of thalamocortical synapse, the maturation of inhibition in layer 4, the development of orientation selective responses in individual cortical neurons, and the formation of ocular dominance columns. In addition, monocular deprivation during development reveals that ocular dominance plasticity is paradoxical in the absence of subplate neurons. Because subplate neurons projecting to layer 4 are glutamatergic, these diverse deficits following subplate removal were hypothesized to be due to lack of feed-forward thalamic driven cortical excitation. A computational model of the developing thalamocortical pathway incorporating feed-forward excitatory subplate projections replicates both normal development and plasticity of ocular dominance as well as the effects of subplate removal. Therefore, we postulate that feed-forward excitatory projections from subplate neurons into the developing cortical plate enhance correlated activity between thalamus and layer 4 and, in concert with Hebbian learning rules in layer 4, allow maturational and plastic processes in layer 4 to commence. Thus subplate neurons are a crucial regulator of cortical development and plasticity, and damage to these neurons might play a role in the pathology of many neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, Institute for Systems Research, and Program in Neuroscience and Cognitive Science, University of MarylandCollege Park, MD, USA,*Correspondence: Patrick O. Kanold, Department of Biology, University of Maryland, 1116 Biosciences Research Building, College Park, MD 20742, USA. e-mail:
| |
Collapse
|
31
|
Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB. Roles of the cation-chloride cotransporters in neurological disease. NATURE CLINICAL PRACTICE. NEUROLOGY 2008; 4:490-503. [PMID: 18769373 DOI: 10.1038/ncpneuro0883] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/08/2008] [Indexed: 02/02/2023]
Abstract
In the nervous system, the intracellular chloride concentration ([Cl(-)](i)) determines the strength and polarity of gamma-aminobutyric acid (GABA)-mediated neurotransmission. [Cl(-)](i) is determined, in part, by the activities of the SLC12 cation-chloride cotransporters (CCCs). These transporters include the Na-K-2Cl cotransporter NKCC1, which mediates chloride influx, and various K-Cl cotransporters--such as KCC2 and KCC3-that extrude chloride. A precise balance between NKCC1 and KCC2 activity is necessary for inhibitory GABAergic signaling in the adult CNS, and for excitatory GABAergic signaling in the developing CNS and the adult PNS. Altered chloride homeostasis, resulting from mutation or dysfunction of NKCC1 and/or KCC2, causes neuronal hypoexcitability or hyperexcitability; such derangements have been implicated in the pathogenesis of seizures and neuropathic pain. [Cl(-)](i) is also regulated to maintain normal cell volume. Dysfunction of NKCC1 or of swelling-activated K-Cl cotransporters has been implicated in the damaging secondary effects of cerebral edema after ischemic and traumatic brain injury, as well as in swelling-related neurodegeneration. CCCs represent attractive therapeutic targets in neurological disorders the pathogenesis of which involves deranged cellular chloride homoestasis.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|