1
|
Barbosa-Azevedo M, Dias-Carvalho A, Carvalho F, Costa VM. Chemotherapy-induced cognitive impairment and glia: A new take on chemobrain? Toxicol Appl Pharmacol 2024; 492:117085. [PMID: 39236990 DOI: 10.1016/j.taap.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The significant rise in cancer survivorship stands out as one of the most notable achievements of modern science. However, this comes with a significant burden, as cancer treatment is not without adverse effects. Lately, there has been a growing focus on cognitive dysfunction associated with cancer treatment, often referred to as 'chemobrain'. It significantly impacts the quality of life for cancer survivors. The underlying mechanisms studied so far usually focus on neurons, while other cells of the central nervous system are often overlooked. This review seeks to place the hypothesis that glial cells may play a role in the development of chemotherapy-induced cognitive dysfunction. It summarizes the primary mechanisms proposed to date while underscoring the existing gaps in this research field. Inflammation and release of pro-inflammatory mediators by M1 microglia and A1 astrocytes are the most prevalent findings after chemotherapy. However, activation of A1 astrocytes by some chemotherapeutic agents may contribute to neuronal degeneration, alterations in synaptic branches, as well as glutamate excitotoxicity, which can contribute to cognitive impairment. Furthermore, the reduction in the number of oligodendrocytes after chemotherapy may also impact the myelin sheath, contributing to 'chemobrain'. Furthermore, some chemotherapeutic drugs activate M1 microglia, which is associated with decreased neuroplasticity and, possibly, cognitive impairment. In conclusion, data regarding the effects of chemotherapy on glial cells are scarce, and it is essential to understand how these cells are affected after cancer treatment to enable reliable therapeutic or preventive actions on cancer-treated patients.
Collapse
Affiliation(s)
- Maria Barbosa-Azevedo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
3
|
Cui J, Zhao D, Xu M, Li Z, Qian J, Song N, Wang J, Xie J. Characterization of graded 6-Hydroxydopamine unilateral lesion in medial forebrain bundle of mice. Sci Rep 2024; 14:3721. [PMID: 38355892 PMCID: PMC10866897 DOI: 10.1038/s41598-024-54066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease, with a progressive loss of dopaminergic cells and fibers. The purpose of this study was to use different doses of 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB) of mice to mimic the different stages of the disease and to characterize in detail their motor and non-motor behavior, as well as neuropathological features in the nigrostriatal pathway. MFB were injected with 0.5 μg, 1 μg, 2 μg of 6-OHDA using a brain stereotaxic technique. 6-OHDA induced mitochondrial damage dose-dependently, as well as substantia nigra pars compacta (SNpc) tyrosine hydroxylase-positive (TH+) cell loss and striatal TH fiber loss. Activation of astrocytes and microglia in the SNpc and striatum were consistently observed at 7 weeks, suggesting a long-term glial response in the nigrostriatal system. Even with a partial or complete denervation of the nigrostriatal pathway, 6-OHDA did not cause anxiety, although depression-like behavior appeared. Certain gait disturbances were observed in 0.5 μg 6-OHDA lesioned mice, and more extensive in 1 μg group. Despite the loss of more neurons from 2 μg 6-OHDA, there was no further impairment in behaviors compared to 1 μg 6-OHDA. Our data have implications that 1 μg 6-OHDA was necessary and sufficient to induce motor and non-motor symptoms in mice, thus a valuable mouse tool to explore disease progression and new treatment in PD.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Zhao
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zheheng Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Garmabi B, Mohaddes R, Rezvani F, Mohseni F, Khastar H, Khaksari M. Erythropoietin improve spatial memory impairment following methamphetamine neurotoxicity by inhibition of apoptosis, oxidative stress and neuroinflammation in CA1 area of hippocampus. J Chem Neuroanat 2022; 124:102137. [PMID: 35842017 DOI: 10.1016/j.jchemneu.2022.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Methamphetamine (METH) is one of the most widely used addictive drugs, and addiction to it is on the rise all over the world. METH abuse has long-term damaging effects that reduce memory and impair cognitive functions. According to studies, the observed effects are strongly related to the nerve cell damage caused by METH, which leads to neurotoxicity. Some of these intra-neuronal events include dopamine oxidation, excitotoxicity, and oxidative stress. Erythropoietin (EPO) is a hormone produced primarily by the kidneys and, in small quantities, by the liver. Studies have shown that EPO exhibits considerable neuroprotective effects. This study aimed to investigate the protective effects of EPO on METH neurotoxicity. METHODS Initially, 48 male Wistar rats, weighing 250-300 g, were randomly assigned to four groups: control (n = 12), METH (n = 12), and METH+EPO (2500, 5000 IU/kg/IP- n = 12). METH was injected intraperitoneally at a dose of 40 mg per kg of body weight (four injections of 10 mg every two hours) to induce neurotoxicity. EPO was injected at doses of 2500 and 5000 IU/kg seven days after the last METH administration (ip). Morris water maze test was performed following EPO injection (1 day after the last dose) to assess spatial memory. The brains were removed after the behavioral test, biochemical evaluations and immunohistochemistry (caspase-3 and GFAP) was performed. RESULTS The results showed that EPO treatment significantly improved spatial memory impairment (P < 0.01), compared to the METH group, EPO was a significant reduction in malondialdehyde and TNF-α (P < 0.01), as well as an increase in superoxide dismutase (P < 0.05) and glutathione-PX (P < 0.01). Furthermore, EPO treatment significantly reduced the number of GFAP positive cells (P < 0.01) and caspase 3 (P < 0.001) in the hippocampus (CA1 region). CONCLUSIONS The study findings suggested that EPO may have great neuroprotective effects on METH neurotoxicity due to its anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Behzad Garmabi
- Neurosciences Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Mohaddes
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Rezvani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fahimeh Mohseni
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
6
|
Abolarin PO, Nafiu AB, Oyewole AL, Amin A, Ogundele OM, Owoyele BV. Selenium reduces nociceptive response in acute 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity. IBRO Neurosci Rep 2021; 12:1-11. [PMID: 34927129 PMCID: PMC8652001 DOI: 10.1016/j.ibneur.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The potential of Se to alleviate pain associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity was investigated. Swiss mice were intraperitoneally injected with MPTP (20 mg/kg) 4 times with an interval of 2 h in 1 day. Seven days after MPTP injection, the mice (n = 5 mice per group) were randomly assigned to groups: MPTP-, DOPA (50 mg/kg)-, Se4 (0.4 mg/kg)-, Se6 (0.6 mg/kg)-, DOPA+Se4-, and DOPA+Se6-treated groups were compared with controls. MPTP mice were treated for seven days; thereafter, motor-coordination and nociceptive-motor reactions were assessed. Pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and selected pain biomarkers (substance P (SP), glutamate and β-endorphin) were assessed in the serum and the substantial nigra pars compacta (SNpc). Motor activity was increased slightly by Se (0.6 or 0.4 mg/kg) vs. MPTP (10.48 ± 2.71 or 11.81 ± 1.28 s vs. 3.53 ± 0.06 s respectively) but considerably increased by DOPA (50 mg/kg) vs. MPTP (50.47 ± 3.06 s vs. 3.53 ± 0.06 s respectively). Se and DOPA increased nociceptive threshold but Se alone reduced both serum and SN pro-inflammatory cytokines. Se modulates SP while DOPA modulates SP and glutamate in the SNpc of mice treated with MPTP. Se suppressed pro-inflammatory cytokines and restored the basal pain biomarkers in the SNpc of mice treated with MPTP. Se requires further study as analgesic adjuvant.
Collapse
Affiliation(s)
| | | | | | - Abdulbasit Amin
- Department of Physiology, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
| | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | | |
Collapse
|
7
|
Clyburn C, Browning KN. Glutamatergic plasticity within neurocircuits of the dorsal vagal complex and the regulation of gastric functions. Am J Physiol Gastrointest Liver Physiol 2021; 320:G880-G887. [PMID: 33730858 PMCID: PMC8202199 DOI: 10.1152/ajpgi.00014.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The meticulous regulation of the gastrointestinal (GI) tract is required for the coordination of gastric motility and emptying, intestinal secretion, absorption, and transit as well as for the overarching management of food intake and energy homeostasis. Disruption of GI functions is associated with the development of severe GI disorders and the alteration of food intake and caloric balance. Functional GI disorders as well as the dysregulation of energy balance and food intake are frequently associated with, or result from, alterations in the central regulation of GI control. The faithful and rapid transmission of information from the stomach and upper GI tract to second-order neurons of the nucleus of the tractus solitarius (NTS) relies on the delicate modulation of excitatory glutamatergic transmission, as does the relay of integrated signals from the NTS to parasympathetic efferent neurons of the dorsal motor nucleus of the vagus (DMV). Many studies have focused on understanding the physiological and pathophysiological modulation of these glutamatergic synapses, although their role in the control and regulation of GI functions has lagged behind that of cardiovascular and respiratory functions. The purpose of this review is to examine the current literature exploring the role of glutamatergic transmission in the DVC in the regulation of GI functions.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
8
|
Pajares M, I. Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells 2020; 9:cells9071687. [PMID: 32674367 PMCID: PMC7408280 DOI: 10.3390/cells9071687] [Citation(s) in RCA: 356] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder primarily characterized by the death of dopaminergic neurons that project from the substantia nigra pars compacta. Although the molecular bases for PD development are still little defined, extensive evidence from human samples and animal models support the involvement of inflammation in onset or progression. However, the exact trigger for this response remains unclear. Here, we provide a systematic review of the cellular mediators, i.e., microglia, astroglia and endothelial cells. We also discuss the genetic and transcriptional control of inflammation in PD and the immunomodulatory role of dopamine and reactive oxygen species. Finally, we summarize the preclinical and clinical approaches targeting neuroinflammation in PD.
Collapse
Affiliation(s)
- Marta Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ana I. Rojo
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERcv), ISCIII, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (M.P.); (A.I.R.); (L.B.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: ; Tel.: +34-915854383; Fax: +34-915854401
| |
Collapse
|
9
|
Li R, Dang S, Yao M, Zhao C, Zhang W, Cui J, Wang J, Wen A. Osthole alleviates neuropathic pain in mice by inhibiting the P2Y 1-receptor-dependent JNK signaling pathway. Aging (Albany NY) 2020; 12:7945-7962. [PMID: 32365053 PMCID: PMC7244062 DOI: 10.18632/aging.103114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/11/2020] [Indexed: 04/14/2023]
Abstract
There are many reports about natural products relieving neuralgia. Osthole is the main component of Angelica biserrata Yuan et Shan, a natural product that treats rheumatism through the elimination of inflammation and the alleviation of pain that has a long history in the clinic. The analgesic mechanism of osthole is complicated and confusing. Astrocytes have attracted increasing attention from pain researchers. Inhibitors targeting astrocytes are thought to be promising treatments for neuropathic pain. Whether osthole can alleviate neuropathic pain through astrocytes has not been elucidated in detail. In this study, CCI surgery was used to establish the neuropathic pain model in mice. The CCI mice were treated with osthole (5, 10, or 20 mg/kg/day) for 14 days in vivo. Mechanical allodynia and heat hyperalgesia were measured to evaluate the therapeutic effect of osthole. In mechanism research, the activation of astrocytes; the protein expression of P2Y1R and p-JNK in astrocytes; the release of inflammatory factors; the variations in mEPSPs and eEPSPs; and the levels of GluA1, GluN2B, p-ERK, p-CREB and c-Fos in neurons were observed. The P2Y1R inhibitor MRS2179 and the p-JNK inhibitor SP600125 were used to demonstrate how osthole works in neuropathic pain. In addition, astrocytes and neurons were used to estimate the direct effect of osthole on astrocyte-neuron interactions and signal transmission in vitro. Our findings suggest that osthole treatment obviously relieved mechanical allodynia and heat hyperalgesia in CCI mice. P2Y1R is involved in CCI-induced pain hypersensitivity, and P2Y1R is required for osthole-induced p-JNK downregulation in the spinal cord. Osthole inhibited astrocyte activation and reduced inflammatory factor expression. After osthole treatment, mEPSP frequency and eEPSP amplitude were decreased in spinal lamina I-II neurons. Downstream signaling molecules such as pGluA1, pGluN2B, p-ERK, p-CREB and c-Fos were also reduced very quickly in osthole-treated neuralgic mice. Our conclusion is that osthole alleviates neuropathic pain in mice via the P2Y1-receptor-dependent JNK signaling pathway in spinal astrocytes, and osthole could be considered a potential pharmacotherapy to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shajie Dang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi’an, Shaanxi 71061, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
10
|
Li M, Zhu M, Xu Q, Ding F, Tian Y, Zhang M. Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of Parkinson’s disease. Biochem Biophys Res Commun 2020; 521:868-873. [DOI: 10.1016/j.bbrc.2019.10.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
|
11
|
Tomov N, Surchev L, Wiedenmann C, Döbrössy M, Nikkhah G. Roscovitine, an experimental CDK5 inhibitor, causes delayed suppression of microglial, but not astroglial recruitment around intracerebral dopaminergic grafts. Exp Neurol 2019; 318:135-144. [DOI: 10.1016/j.expneurol.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/18/2018] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
|
12
|
Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson's Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants (Basel) 2019; 8:antiox8080265. [PMID: 31374936 PMCID: PMC6719180 DOI: 10.3390/antiox8080265] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide; it is characterized by dopaminergic neurodegeneration in the substantia nigra pars compacta, but its etiology is not fully understood. Astrocytes, a class of glial cells in the central nervous system (CNS), provide critical structural and metabolic support to neurons, but growing evidence reveals that astrocytic oxidative and nitrosative stress contributes to PD pathogenesis. As astrocytes play a critical role in the production of antioxidants and the detoxification of reactive oxygen and nitrogen species (ROS/RNS), astrocytic oxidative/nitrosative stress has emerged as a critical mediator of the etiology of PD. Cellular stress and inflammation induce reactive astrogliosis, which initiates the production of astrocytic ROS/RNS and may lead to oxidative/nitrosative stress and PD pathogenesis. Although the cause of aberrant reactive astrogliosis is unknown, gene mutations and environmental toxicants may also contribute to astrocytic oxidative/nitrosative stress. In this review, we briefly discuss the physiological functions of astrocytes and the role of astrocytic oxidative/nitrosative stress in PD pathogenesis. Additionally, we examine the impact of PD-related genes such as α-synuclein, protein deglycase DJ-1( DJ-1), Parkin, and PTEN-induced kinase 1 (PINK1) on astrocytic function, and highlight the impact of environmental toxicants, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, manganese, and paraquat, on astrocytic oxidative/nitrosative stress in experimental models.
Collapse
Affiliation(s)
- Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - James Johnson
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy Florida A&M University, Tallahassee, FL 32301, USA.
| |
Collapse
|
13
|
Rentsch P, Stayte S, Morris GP, Vissel B. Time dependent degeneration of the nigrostriatal tract in mice with 6-OHDA lesioned medial forebrain bundle and the effect of activin A on L-Dopa induced dyskinesia. BMC Neurosci 2019; 20:5. [PMID: 30760214 PMCID: PMC6374903 DOI: 10.1186/s12868-019-0487-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background Accurately assessing promising therapeutic interventions for human diseases depends, in part, on the reproducibility of preclinical disease models. With the development of transgenic mice, the rapid adaptation of a 6-OHDA mouse model of Parkinson’s disease that was originally described for the use in rats has come with a lack of a comprehensive characterization of lesion progression. In this study we therefore first characterised the time course of neurodegeneration in the substantia nigra pars compacta and striatum over a 4 week period following 6-OHDA injection into the medial forebrain bundle of mice. We then utilised the model to assess the anti-dyskinetic efficacy of recombinant activin A, a putative neuroprotectant and anti-inflammatory that is endogenously upregulated during the course of Parkinson’s disease. Results We found that degeneration of fibers in the striatum was fully established within 1 week following 6-OHDA administration, but that the loss of neurons continued to progress over time, becoming fully established 3 weeks after the 6-OHDA injection. In assessing the anti-dyskinetic efficacy of activin A using this model we found that treatment with activin A did not significantly reduce the severity, or delay the time-of-onset, of dyskinesia. Conclusion First, the current study concludes that a 3 week duration is required to establish a complete lesion of the nigrostriatal tract following 6-OHDA injection into the medial forebrain bundle of mice. Second, we found that activin A was not anti-dyskinetic in this model. Electronic supplementary material The online version of this article (10.1186/s12868-019-0487-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peggy Rentsch
- Faculty of Medicine, University of New South Wales, High Street, Sydney, NSW, 2052, Australia.,Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia.,St. Vincent's Centre for Applied Medical Research (AMR), 405 Liverpool St, Sydney, NSW, 2010, Australia
| | - Sandy Stayte
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia.,St. Vincent's Centre for Applied Medical Research (AMR), 405 Liverpool St, Sydney, NSW, 2010, Australia
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia.,St. Vincent's Centre for Applied Medical Research (AMR), 405 Liverpool St, Sydney, NSW, 2010, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia. .,St. Vincent's Centre for Applied Medical Research (AMR), 405 Liverpool St, Sydney, NSW, 2010, Australia.
| |
Collapse
|
14
|
Narbute K, Piļipenko V, Pupure J, Dzirkale Z, Jonavičė U, Tunaitis V, Kriaučiūnaitė K, Jarmalavičiūtė A, Jansone B, Kluša V, Pivoriūnas A. Intranasal Administration of Extracellular Vesicles Derived from Human Teeth Stem Cells Improves Motor Symptoms and Normalizes Tyrosine Hydroxylase Expression in the Substantia Nigra and Striatum of the 6-Hydroxydopamine-Treated Rats. Stem Cells Transl Med 2019; 8:490-499. [PMID: 30706999 PMCID: PMC6477008 DOI: 10.1002/sctm.18-0162] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting millions of people worldwide. At present, there is no effective cure for PD; treatments are symptomatic and do not halt progression of neurodegeneration. Extracellular vesicles (EVs) can cross the blood-brain barrier and represent promising alternative to the classical treatment strategies. In the present study, we examined therapeutic effects of intranasal administration of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on unilateral 6-hydroxydopamine (6-OHDA) medial forebrain bundle (MFB) rat model of PD. CatWalk gait tests revealed that EVs effectively suppressed 6-OHDA-induced gait impairments. All tested gait parameters (stand, stride length, step cycle, and duty cycle) were significantly improved in EV-treated animals when compared with 6-OHDA-lesion group rats. Furthermore, EVs slowed down numbers of 6-OHDA-induced contralateral rotations in apomorphine test. Improvements in motor function correlated with normalization of tyrosine hydroxylase expression in the striatum and substantia nigra. In conclusion, we demonstrated, for the first time, the therapeutic efficacy of intranasal administration of EVs derived from SHEDs in a rat model of PD induced by 6-OHDA intra-MFB lesion. Our findings could be potentially exploited for the development of new treatment strategies against PD.
Collapse
Affiliation(s)
- Karīna Narbute
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Vladimirs Piļipenko
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Jolanta Pupure
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Zane Dzirkale
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Akvilė Jarmalavičiūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Vija Kluša
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
15
|
Hernando S, Requejo C, Herran E, Ruiz-Ortega JA, Morera-Herreras T, Lafuente JV, Ugedo L, Gainza E, Pedraz JL, Igartua M, Hernandez RM. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson's disease: The role of glia and NRf2 regulation. Neurobiol Dis 2018; 121:252-262. [PMID: 30296616 DOI: 10.1016/j.nbd.2018.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely associated to beneficial effect over different neurodegenerative diseases. In the present study, we tested the potential therapeutic effect of docohexanoic acid (DHA) and its hydroxylated derivate, DHAH, in a partial lesion model of Parkinson's disease (PD). One month before and four months after the striatal lesion with 6-OHDA was made, the animals were daily treated with DHA (50 mg/kg), DHAH (50 mg/kg), vehicle or saline, by intragastric administration. Animal groups under n-3 PUFA treatments exhibited a trend to improve in amphetamine-induced rotations and cylinder test. The beneficial effect seen in behavioral studies were confirmed with TH immunostaining. TH+ fibers and TH+ neurons increased in the experimental groups treated with both n-3 PUFAs, DHA and DHAH. Moreover, the n-3 PUFAs administration decreased the astrogliosis and microgliosis, in both the striatum and substantia nigra (SN), with a higher decrease of GFAP+ and Iba-1+ cells for the DHAH treated group. This experimental group also revealed a positive effect on Nrf2 pathway regulation, decreasing the positive Nrf2 immmunostaining in the striatum and SN, which revealed a potential antioxidant effect of this compound. Taking together, these data suggest a positive effect of n-3 PUFAs administration, and more concretely of DHAH, for PD treatment as it exhibited positive results on dopaminergic system, neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Catalina Requejo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; LaNCE, Dept. Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Enara Herran
- BioPraxis AIE, Hermanos Lumière 5, 01510 Miñano, Spain
| | - Jose Angel Ruiz-Ortega
- Dept. Pharmacology, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Dept. Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Teresa Morera-Herreras
- Dept. Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jose Vicente Lafuente
- LaNCE, Dept. Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Group Nanoneurosurgery, Institute of Health Research Biocruces, Barakaldo 48903, Spain
| | - Luisa Ugedo
- Dept. Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain.
| |
Collapse
|
16
|
Molecular Imaging of Neuroinflammation in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:347-363. [DOI: 10.1016/bs.irn.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Watanabe R, Kurose T, Morishige Y, Fujimori K. Protective Effects of Fisetin Against 6-OHDA-Induced Apoptosis by Activation of PI3K-Akt Signaling in Human Neuroblastoma SH-SY5Y Cells. Neurochem Res 2017; 43:488-499. [PMID: 29204750 DOI: 10.1007/s11064-017-2445-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023]
Abstract
6-Hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS) that are associated with various neurodegenerative diseases such as Parkinson's disease. 3,3',4',7-Tetrahydroxyflavone (fisetin), a plant flavonoid has a variety of physiological effects such as antioxidant activity. In this study, we investigated the molecular mechanism of the neuroprotective effects of fisetin against 6-OHDA-induced cell death in human neuroblastoma SH-SY5Y cells. 6-OHDA-mediated cell toxicity was reduced in a fisetin concentration-dependent manner. 6-OHDA-mediated elevation of the expression of the oxidative stress-related genes such as hemeoxygenase-1, NAD(P)H dehydrogenase quinone 1, NF-E2-related factor 2, and γ-glutamate-cysteine ligase modifier was suppressed by fisetin. Fisetin also lowered the ratio of the proapoptotic Bax protein and the antiapoptotic Bcl-2 protein in SH-SY5Y cells. Moreover, fisetin effectively suppressed 6-OHDA-mediated activation of caspase-3 and caspase-9, which leads to the cell death, while, 6-OHDA-induced caspase-3/7 activity was lowered. Furthermore, fisetin activated the PI3K-Akt signaling, which inhibits the caspase cascade, and fisetin-mediated inhibition of 6-OHDA-induced cell death was negated by the co-treatment with an Akt inhibitor. These results indicate that fisetin protects 6-OHDA-induced cell death by activating PI3K-Akt signaling in human neuronal SH-SY5Y cells. This is the first report that the PI3K-Akt signaling is involved in the fisetin-protected ROS-mediated neuronal cell death.
Collapse
Affiliation(s)
- Ryoko Watanabe
- Laboratory of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takumi Kurose
- Laboratory of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuta Morishige
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.,Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-8533, Japan
| | - Ko Fujimori
- Laboratory of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
18
|
Deep Brain Stimulation of Hemiparkinsonian Rats with Unipolar and Bipolar Electrodes for up to 6 Weeks: Behavioral Testing of Freely Moving Animals. PARKINSONS DISEASE 2017; 2017:5693589. [PMID: 28758044 PMCID: PMC5512044 DOI: 10.1155/2017/5693589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Although the clinical use of deep brain stimulation (DBS) is increasing, its basic mechanisms of action are still poorly understood. Platinum/iridium electrodes were inserted into the subthalamic nucleus of rats with unilateral 6-OHDA-induced lesions of the medial forebrain bundle. Six behavioral parameters were compared with respect to their potential to detect DBS effects. Locomotor function was quantified by (i) apomorphine-induced rotation, (ii) initiation time, (iii) the number of adjusting steps in the stepping test, and (iv) the total migration distance in the open field test. Sensorimotor neglect and anxiety were quantified by (v) the retrieval bias in the corridor test and (vi) the ratio of migration distance in the center versus in the periphery in the open field test, respectively. In our setup, unipolar stimulation was found to be more efficient than bipolar stimulation for achieving beneficial long-term DBS effects. Performance in the apomorphine-induced rotation test showed no improvement after 6 weeks. DBS reduced the initiation time of the contralateral paw in the stepping test after 3 weeks of DBS followed by 3 weeks without DBS. Similarly, sensorimotor neglect was improved. The latter two parameters were found to be most appropriate for judging therapeutic DBS effects.
Collapse
|
19
|
Effect of Intrastriatal 6-OHDA Lesions on Extrastriatal Brain Structures in the Mouse. Mol Neurobiol 2017; 55:4240-4252. [PMID: 28616718 DOI: 10.1007/s12035-017-0637-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor and non-motor symptoms. The underlying pathology of non-motor symptoms is poorly understood. Discussed are pathological changes of extrastriatal brain structures. In this study, we characterized histopathological alterations of extrastriatal brain structures in the 6-hydroxydopamine (6-OHDA) PD animal model. Lesions were induced by unilateral stereotactic injections of 6-OHDA into the striatum or medial forebrain bundle of adult male mice. Loss of tyrosine hydroxylase positive (TH+) fibers as well as glia activation was quantified following stereological principles. Loss of dopaminergic innervation was further investigated by western-blotting. As expected, 6-OHDA injection into the nigrostriatal route induced retrograde degeneration of dopaminergic neurons within the substantia nigra pars compacta (SNpc), less so within the ventral tegmental area. Furthermore, we observed a region-specific drop of TH+ projection fiber density in distinct cortical regions. This pathology was most pronounced in the cingulate- and motor cortex, whereas the piriform cortex was just modestly affected. Loss of cortical TH+ fibers was not paralleled by microglia or astrocyte activation. Our results demonstrate that the loss of dopaminergic neurons within the substantia nigra pars compacta is paralleled by a cortical dopaminergic denervation in the 6-OHDA model. This model serves as a valuable tool to investigate mechanisms operant during cortical pathology in PD patients. Further studies are needed to understand why cortical dopaminergic innervation is lost in this model, and what functional consequence is associated with the observed denervation.
Collapse
|
20
|
Villalba RM, Smith Y. Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 2017; 125:431-447. [PMID: 28540422 DOI: 10.1007/s00702-017-1735-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
In Parkinson's disease (PD) patients and animal models of PD, the progressive degeneration of the nigrostriatal dopamine (DA) projection leads to two major changes in the morphology of striatal projection neurons (SPNs), i.e., a profound loss of dendritic spines and the remodeling of axospinous glutamatergic synapses. Striatal spine loss is an early event tightly associated with the extent of striatal DA denervation, but not the severity of parkinsonian motor symptoms, suggesting that striatal spine pruning might be a form of homeostatic plasticity that compensates for the loss of striatal DA innervation and the resulting dysregulation of corticostriatal glutamatergic transmission. On the other hand, the remodeling of axospinous corticostriatal and thalamostriatal glutamatergic synapses might represent a form of late maladaptive plasticity that underlies changes in the strength and plastic properties of these afferents and the resulting increased firing and bursting activity of striatal SPNs in the parkinsonian state. There is also evidence that these abnormal synaptic connections might contribute to the pathophysiology of L-DOPA-induced dyskinesia. Despite the significant advances made in this field over the last thirty years, many controversial issues remain about the striatal SPN subtypes affected, the role of spine changes in the altered activity of SPNs in the parkinsonisn state, and the importance of striatal spine plasticity in the pathophysiology of L-DOPA-induced dyskinesia. In this review, we will examine the current state of knowledge of these issues, discuss the limitations of the animal models used to address some of these questions, and assess the relevance of data from animal models to the human-diseased condition.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA. .,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.,UDALL Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Kuter K, Olech Ł, Głowacka U. Prolonged Dysfunction of Astrocytes and Activation of Microglia Accelerate Degeneration of Dopaminergic Neurons in the Rat Substantia Nigra and Block Compensation of Early Motor Dysfunction Induced by 6-OHDA. Mol Neurobiol 2017; 55:3049-3066. [PMID: 28466266 PMCID: PMC5842510 DOI: 10.1007/s12035-017-0529-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023]
Abstract
Progressive degeneration of dopaminergic neurons in the substantia nigra (SN) is the underlying cause of Parkinson’s disease (PD). The disease in early stages is difficult to diagnose, because behavioral deficits are masked by compensatory processes. Astrocytic and microglial pathology precedes motor symptoms. Besides supportive functions of astrocytes in the brain, their role in PD is unrecognized. Prolonged dysfunction of astrocytes could increase the vulnerability of dopaminergic neurons and advance their degeneration during aging. The aim of our studies was to find out whether prolonged dysfunction of astrocytes in the SN is deleterious for neuronal functioning and if it influences their survival after toxic insult or changes the compensatory potential of the remaining neurons. In Wistar rat model, we induced activation, prolonged dysfunction, and death of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, without causing dopaminergic neuron degeneration. Strongly enhanced dopamine turnover in the SN after 7 days of FC infusion was induced probably by microglia activated in response to astrocyte stress. The FC effect was reversible, and astrocyte pool was replenished 3 weeks after the end of infusion. Importantly, the prolonged astrocyte dysfunction and microglia activation accelerated degeneration of dopaminergic neurons induced by 6-hydroxydopamine and blocked the behavioral compensation normally observed after moderate neurodegeneration. Impaired astrocyte functioning, activation of microglia, diminishing compensatory capability of the dopaminergic system, and increasing neuronal vulnerability to external insults could be the underlying causes of PD. This animal model of prolonged astrocyte dysfunction can be useful for in vivo studies of glia–microglia–neuron interaction.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland.
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| |
Collapse
|
22
|
Mori MA, Delattre AM, Carabelli B, Pudell C, Bortolanza M, Staziaki PV, Visentainer JV, Montanher PF, Del Bel EA, Ferraz AC. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson's disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 2017; 21:341-351. [PMID: 28221817 DOI: 10.1080/1028415x.2017.1290928] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is characterized by deterioration of the nigrostriatal system and associated with chronic neuroinflammation. Glial activation has been associated with regulating the survival of dopaminergic neurons and is thought to contribute to PD through the release of proinflammatory and neurotoxic factors, such as reactive nitric oxide (NO) that triggers or exacerbates neurodegeneration in PD. Polyunsaturated fatty acids (PUFAs) exert protective effects, including antiinflammatory, antiapoptotic, and antioxidant activity, and may be promising for delaying or preventing PD by attenuating neuroinflammation and preserving dopaminergic neurons. The present study investigated the effects of fish oil supplementation that was rich in PUFAs on dopaminergic neuron loss, the density of inducible nitric oxide synthase (iNOS)-immunoreactive cells, and microglia and astrocyte reactivity in the substantia nigra pars compacta (SNpc) and striatal dopaminergic fibers. METHODS The animals were supplemented with fish oil for 50 days and subjected to unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-induced lesions as a model of PD. RESULTS Fish oil mitigated the loss of SNpc neurons and nerve terminals in the striatum that was caused by 6-OHDA. This protective effect was associated with reductions of the density of iNOS-immunoreactive cells and microglia and astrocyte reactivity. DISCUSSION These results suggest that the antioxidant and antiinflammatory properties of fish oil supplementation are closely related to a decrease in dopaminergic damage that is caused by the 6-OHDA model of PD.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Ana Marcia Delattre
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Bruno Carabelli
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Claudia Pudell
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Mariza Bortolanza
- b Departamento de Morfologia, Fisiologia e Patologia, Escola de Odontologia de Ribeirão Preto (FORP) , Universidade de São Paulo , Av. Café s/n, 14040-904 Ribeirão Preto , SP , Brazil
| | - Pedro Vinícius Staziaki
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Jesuí Vergilio Visentainer
- c Laboratório de Química de Alimentos, Departamento de Química , Universidade Estadual de Maringá , Maringá , PR , Brazil
| | - Paula Fernandes Montanher
- c Laboratório de Química de Alimentos, Departamento de Química , Universidade Estadual de Maringá , Maringá , PR , Brazil
| | - Elaine A Del Bel
- b Departamento de Morfologia, Fisiologia e Patologia, Escola de Odontologia de Ribeirão Preto (FORP) , Universidade de São Paulo , Av. Café s/n, 14040-904 Ribeirão Preto , SP , Brazil
| | - Anete Curte Ferraz
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| |
Collapse
|
23
|
Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 2016; 45:73-91. [DOI: 10.1111/ejn.13482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anna R. Carta
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Mariza Bortolanza
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Terence Duarte
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Elisabetta Pillai
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Gilberto Fisone
- Department of Neuroscience; Karolinska Institutet; Retzius väg 8 17177 Stockholm Sweden
| | - Rita Raisman Vozari
- INSERM U 1127; CNRS UMR 7225; UPMC Univ Paris 06; UMR S 1127; Institut Du Cerveau et de La Moelle Epiniére; ICM; Paris France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
| |
Collapse
|
24
|
Morphological Changes in a Severe Model of Parkinson's Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors. Mol Neurobiol 2016; 54:7722-7735. [PMID: 27844282 DOI: 10.1007/s12035-016-0244-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson's disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.
Collapse
|
25
|
Villalba RM, Mathai A, Smith Y. Morphological changes of glutamatergic synapses in animal models of Parkinson's disease. Front Neuroanat 2015; 9:117. [PMID: 26441550 PMCID: PMC4585113 DOI: 10.3389/fnana.2015.00117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| |
Collapse
|
26
|
Gee LE, Chen N, Ramirez-Zamora A, Shin DS, Pilitsis JG. The effects of subthalamic deep brain stimulation on mechanical and thermal thresholds in 6OHDA-lesioned rats. Eur J Neurosci 2015; 42:2061-9. [PMID: 26082992 DOI: 10.1111/ejn.12992] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
Abstract
Chronic pain is a major complaint for up to 85% of Parkinson's disease patients; however, it often not identified as a symptom of Parkinson's disease. Adequate treatment of motor symptoms often provides analgesic effects in Parkinson's patients but how this occurs remains unclear. Studies have shown both Parkinson's patients and 6-hydroxydopamine-lesioned rats exhibit decreased sensory thresholds. In humans, some show improvements in these deficits after subthalamic deep brain stimulation, while others report no change. Differing methods of testing and response criteria may explain these varying results. We examined this effect in 6-hydroxydopamine-lesioned rats. Sprague-Dawley rats were unilaterally implanted with subthalamic stimulating electrodes in the lesioned right hemisphere and sensory thresholds were tested using von Frey, tail-flick and hot-plate tests. Tests were done during and off subthalamic stimulation at 50 and 150 Hz to assess its effects on sensory thresholds. The 6-hydroxydopamine-lesioned animals exhibited lower mechanical (left paw, P < 0.01) and thermal thresholds than shams (hot plate, P < 0.05). Both 50 and 150 Hz increased mechanical (left paw; P < 0.01) and thermal thresholds in 6-hydroxydopamine-lesioned rats (hot-plate test: 150 Hz, P < 0.05, 50 Hz, P < 0.01). Interestingly, during von Frey testing, low-frequency stimulation provided a more robust improvement in some 6OHDA lesioned rats, while in others, the magnitude of improvement on high-frequency stimulation was greater. This study shows that subthalamic deep brain stimulation improves mechanical allodynia and thermal hyperalgesia in 6-hydroxydopamine-lesioned animals at both high and low frequencies. Furthermore, we suggest considering using low-frequency stimulation when treating Parkinson's patients where pain remains the predominant complaint.
Collapse
Affiliation(s)
- Lucy E Gee
- Center for Neuroscience and Neuropharmacology, Albany Medical College, Albany, NY, USA.,Department of Neurosurgery, AMC Neurosurgery Group, Albany Medical Center, 47 New Scotland Ave, MC 10, Physicians Pavilion, 1st Floor, Albany, NY, 12208, USA
| | - Nita Chen
- Center for Neuroscience and Neuropharmacology, Albany Medical College, Albany, NY, USA
| | | | - Damian S Shin
- Center for Neuroscience and Neuropharmacology, Albany Medical College, Albany, NY, USA
| | - Julie G Pilitsis
- Center for Neuroscience and Neuropharmacology, Albany Medical College, Albany, NY, USA.,Department of Neurosurgery, AMC Neurosurgery Group, Albany Medical Center, 47 New Scotland Ave, MC 10, Physicians Pavilion, 1st Floor, Albany, NY, 12208, USA
| |
Collapse
|
27
|
Park J, Lim CS, Seo H, Park CA, Zhuo M, Kaang BK, Lee K. Pain perception in acute model mice of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mol Pain 2015; 11:28. [PMID: 25981600 PMCID: PMC4448854 DOI: 10.1186/s12990-015-0026-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022] Open
Abstract
Background Pain is the most prominent non-motor symptom observed in patients with Parkinson’s disease (PD). However, the mechanisms underlying the generation of pain in PD have not been well studied. We used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD to analyze the relationship between pain sensory abnormalities and the degeneration of dopaminergic neurons. Results The latency to fall off the rotarod and the total distance traveled in round chamber were significantly reduced in MPTP-induced PD mice, consistent with motor dysfunction. MPTP-treated mice also showed remarkably shorter nociceptive response latencies compared to saline-treated mice and the subcutaneous injection of L-3,4-dihydroxyphenylalanine (L-DOPA) partially reversed pain hypersensitivity induced by MPTP treatment. We found that degeneration of cell bodies and fibers in the substantia nigra pars compacta and the striatum of MPTP-treated mice. In addition, astrocytic and microglial activation was seen in the subthalamic nucleus and neuronal activity was significantly increased in the striatum and globus pallidus. However, we did not observe any changes in neurons, astrocytes, and microglia of both the dorsal and ventral horns in the spinal cord after MPTP treatment. Conclusions These results suggest that the dopaminergic nigrostriatal pathway may have a role in inhibiting noxious stimuli, and that abnormal inflammatory responses and neural activity in basal ganglia is correlated to pain processing in PD induced by MPTP treatment.
Collapse
Affiliation(s)
- Jihye Park
- Neurobiology Laboratory, College of Natural Sciences, Seoul National University, 599 Gwanangno, Seoul, 151-747, South Korea.
| | - Chae-Seok Lim
- Neurobiology Laboratory, College of Natural Sciences, Seoul National University, 599 Gwanangno, Seoul, 151-747, South Korea.
| | - Hyunhyo Seo
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| | - Chung-Ah Park
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, The center for the study of pain, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Bong-Kiun Kaang
- Neurobiology Laboratory, College of Natural Sciences, Seoul National University, 599 Gwanangno, Seoul, 151-747, South Korea.
| | - Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| |
Collapse
|
28
|
Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M. The degeneration of dopaminergic synapses in Parkinson's disease: A selective animal model. Behav Brain Res 2015; 289:19-28. [PMID: 25907749 DOI: 10.1016/j.bbr.2015.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022]
Abstract
Available evidence increasingly suggests that the degeneration of dopamine neurons in Parkinson's disease starts in the striatal axons and synaptic terminals. A selective procedure is described here to study the mechanisms involved in the striatal denervation of dopaminergic terminals. This procedure can also be used to analyze mechanisms involved in the dopaminergic re-innervation of the striatum, and the role of astrocytes and microglia in both processes. Adult Sprague-Dawley rats were injected in the lateral ventricles with increasing doses of 6-hydroxydopamine (12-50 μg), which generated a dose-dependent loss of dopaminergic synapses and axons in the striatum, followed by an axonal sprouting (weeks later) and by a progressive recovery of striatal dopaminergic synapses (months later). Both the degeneration and regeneration of the dopaminergic terminals were accompanied by astrogliosis. Because the experimental manipulations did not induce unspecific damage in the striatal tissue, this method could be particularly suitable to study the basic mechanisms involved in the distal degeneration and regeneration of dopaminergic nigrostriatal neurons, and the possible role of astrocytes and microglia in the dynamics of both processes.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Clara Rodriguez-Sabate
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
29
|
Gupta S, Goswami P, Biswas J, Joshi N, Sharma S, Nath C, Singh S. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 778:22-36. [PMID: 25726145 DOI: 10.1016/j.mrgentox.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.
Collapse
Affiliation(s)
- Sonam Gupta
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India
| | | | | | - Neeraj Joshi
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sharad Sharma
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India
| | - C Nath
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India
| | - Sarika Singh
- Toxicology Division, CSIR-CDRI, Lucknow 226031, India.
| |
Collapse
|
30
|
Bosson A, Boisseau S, Buisson A, Savasta M, Albrieux M. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia 2014; 63:673-83. [PMID: 25511180 DOI: 10.1002/glia.22777] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/01/2014] [Indexed: 11/09/2022]
Abstract
The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia circuitry particularly sensitive to pathological dopamine depletion. Indeed, hyperactivity of SNr neurons is known to be responsible for some motor disorders characteristic of Parkinson's disease. The neuronal processing of basal ganglia dysfunction is well understood but, paradoxically, the role of astrocytes in the regulation of SNr activity has rarely been considered. We thus investigated the influence of the disruption of dopaminergic transmission on plastic changes at tripartite glutamatergic synapses in the rat SNr and on astrocyte calcium activity. In 6-hydroxydopamine-lesioned rats, we observed structural plastic changes of tripartite glutamatergic synapses and perisynaptic astrocytic processes. These findings suggest that subthalamonigral synapses undergo morphological changes that accompany the pathophysiological processes of Parkinson's disease. The pharmacological blockade of dopaminergic transmission (with sulpiride and SCH-23390) increased astrocyte calcium excitability, synchrony and gap junction coupling within the SNr, suggesting a functional adaptation of astrocytes to dopamine transmission disruption in this output nucleus. This hyperactivity is partly reversed by subthalamic nucleus high-frequency stimulation which has emerged as an efficient symptomatic treatment for Parkinson's disease. Therefore, our results demonstrate structural and functional reshaping of neuronal and glial elements highlighting a functional plasticity of neuroglial interactions when dopamine transmission is disrupted.
Collapse
Affiliation(s)
- Anthony Bosson
- Inserm, U836, 38000, Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | | | | | | | | |
Collapse
|
31
|
Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. Neurobiol Dis 2014; 73:377-87. [PMID: 25447229 DOI: 10.1016/j.nbd.2014.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Mariza Bortolanza
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Miso Mitkovski
- Light Microscopy Facility Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Charron G, Doudnikoff E, Canron MH, Li Q, Véga C, Marais S, Baufreton J, Vital A, Oliet SHR, Bezard E. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology? Front Aging Neurosci 2014; 6:258. [PMID: 25309435 PMCID: PMC4174038 DOI: 10.3389/fnagi.2014.00258] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/10/2014] [Indexed: 01/30/2023] Open
Abstract
The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e., the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson's disease (PD) remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified "tripartite" synapses in the basal ganglia in general and the striatum in particular, we therefore characterized anatomically the PD-related modifications in astrocytic morphology, the changes in astrocytic network connections and the consequences on the spatial relationship between astrocytic processes and asymmetric synapses in normal and PD-like conditions in experimental and human PD. Our results unravel a dramatic regulation of striatal astrocytosis supporting the hypothesis of a key role in (dys) regulating corticostriatal transmission. Astrocytes and their various properties might thus represent a therapeutic target in PD.
Collapse
Affiliation(s)
- Giselle Charron
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Evelyne Doudnikoff
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Marie-Helene Canron
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Qin Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science and Peking Union Medical College Beijing, China
| | - Céline Véga
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France ; UFR Sciences de la Vie, University Pierre et Marie Curie (UPMC) Paris, France
| | - Sebastien Marais
- Bordeaux Imaging Center, UMS 3420, Université de Bordeaux Bordeaux, France ; CNRS, Bordeaux Imaging Center, UMS 3420 Bordeaux, France ; INSERM, Bordeaux Imaging Center, US 004 Bordeaux, France
| | - Jérôme Baufreton
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Anne Vital
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Stéphane H R Oliet
- Neurocentre Magendie, U862, Institut National de la Santé et de la Recherche Médicale Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France ; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science and Peking Union Medical College Beijing, China
| |
Collapse
|
33
|
Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem Int 2014; 74:53-64. [DOI: 10.1016/j.neuint.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
|
34
|
Dorsal subthalamic nucleus electrical stimulation for drug/treatment-refractory epilepsy may modulate melanocortinergic signaling in astrocytes. Epilepsy Behav 2014; 36:6-8. [PMID: 24835897 DOI: 10.1016/j.yebeh.2014.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/17/2014] [Indexed: 12/17/2022]
|
35
|
Favier M, Carcenac C, Drui G, Boulet S, El Mestikawy S, Savasta M. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease. BMC Neurosci 2013; 14:152. [PMID: 24308494 PMCID: PMC4234365 DOI: 10.1186/1471-2202-14-152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Background It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson’s disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Results Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. Conclusions These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.
Collapse
Affiliation(s)
- Mathieu Favier
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe Dynamique et Physiopathologie des Ganglions de la Base, Grenoble F-38043, Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
36
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
37
|
Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation. Mediators Inflamm 2013; 2013:320519. [PMID: 24023412 PMCID: PMC3760105 DOI: 10.1155/2013/320519] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022] Open
Abstract
Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.
Collapse
|
38
|
Lazzarini M, Martin S, Mitkovski M, Vozari RR, Stühmer W, Bel ED. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 2013; 61:1084-100. [PMID: 23595698 DOI: 10.1002/glia.22496] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/22/2013] [Indexed: 01/09/2023]
Abstract
Neuron-glia interactions play a key role in maintaining and regulating the central nervous system. Glial cells are implicated in the function of dopamine neurons and regulate their survival and resistance to injury. Parkinson's disease is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, decreased striatal dopamine levels and consequent onset of extrapyramidal motor dysfunction. Parkinson's disease is a common chronic, neurodegenerative disorder with no effective protective treatment. In the 6-OHDA mouse model of Parkinson's disease, doxycycline administered at a dose that both induces/represses conditional transgene expression in the tetracycline system, mitigates the loss of dopaminergic neurons in the substantia nigra compacta and nerve terminals in the striatum. This protective effect was associated with: (1) a reduction of microglia in normal mice as a result of doxycycline administration per se; (2) a decrease in the astrocyte and microglia response to the neurotoxin 6-OHDA in the globus pallidus and substantia nigra compacta, and (3) the astrocyte reaction in the striatum. Our results suggest that doxycycline blocks 6-OHDA neurotoxicity in vivo by inhibiting microglial and astrocyte expression. This action of doxycycline in nigrostriatal dopaminergic neuron protection is consistent with a role of glial cells in Parkinson's disease neurodegeneration. The neuroprotective effect of doxycycline may be useful in preventing or slowing the progression of Parkinson's disease and other neurodegenerative diseases linked to glia function.
Collapse
Affiliation(s)
- Marcio Lazzarini
- Department of Morphology, Physiology and Pathology, School of Odontology of Ribeirão Preto (FORP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Lui NP, Chen LW, Yung WH, Chan YS, Yung KKL. Endogenous repair by the activation of cell survival signalling cascades during the early stages of rat Parkinsonism. PLoS One 2012; 7:e51294. [PMID: 23251488 PMCID: PMC3520983 DOI: 10.1371/journal.pone.0051294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/01/2012] [Indexed: 11/26/2022] Open
Abstract
Here we report a previously unknown self repair mechanism during extremely early stages of rat Parkinsonism. Two important cell survival signaling cascades, Phosphatidylinositol-3 kinases (PI3K)/Akt pathway and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, could be responsible for this potential endogenous rescue system. In the 6-hydroxydopamine-lesioned rat, the phosphorylated p44/42 MAPK and its downstream target, the phosphorylated Bad at Ser 112, were up-regulated at post-lesion day 3 and lasted for a couple of weeks. Although the change in the phosphorylated Akt kinase was negligible throughout the studied period, its downstream target, the phosphorylated Bad at 136, was increased from post-lesion day 3 to post-lesion day 14. In the mean time, nestin-positive reactive astrocytes with low levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) appeared at post-lesion day 3 in 6-hydroxydopamine-lesioned rat. BDNF was expressed in both striatum and substantia nigra whereas GDNF was displayed in striatum only. At post-lesion day 14, nestin, BDNF and GDNF expressions were diminished. These neurotrophic factors were believed to initiate the above anti-apoptotic signal transduction cascades as we could see that their expression patterns were similar. The data strongly suggest that there is an endogenous repair effort by evoking the cell survival signaling and possibly via the releases of BDNF and GDNF from nestin-immunoreactive reactive astrocytes. ERK/MAPK pathway was proposed to be the key endogenous neuroprotective mechanisms, particularly in early stages of rat Parkinsonism. However, the self repair effort is only functional within an extremely short time window immediately after onset.
Collapse
Affiliation(s)
- Nga-Ping Lui
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Liang-Wei Chen
- Institute of Neurosciences, The Forth Military Medical University, Xian, PR China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ying-Shing Chan
- Department of Physiology and Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- * E-mail:
| |
Collapse
|
40
|
Khudoerkov RM, Voronkov DN, Yamshchikova NG. Immunohistochemical and morphological changes in neurons and neuroglia in the cerebral nigrostriatal structures under conditions of experimental nigral neurodegeneration. Bull Exp Biol Med 2012; 153:893-7. [PMID: 23113312 DOI: 10.1007/s10517-012-1853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The count of dopamine-containing neurons decreased by 77%, the area of the remaining cells shrank by 75%, and the neuroglia doubled 4 weeks after injection of toxin (6-hydroxydopamine) into the compact part of the substantia nigra of the right cerebral hemisphere of rats, while no changes in the substantia nigra of the left hemisphere were observed. Neurons of the caudate nucleus were virtually unchanged in comparison with the intact control, while the neuroglia was activated: its total volume in the right hemisphere increased by 33% (50% increase in astrocyte count and a 25% increase of the rest neuroglia), while in the left hemisphere only astrocyte count increased by 20%. Astrocyte nuclei in the caudate nuclei of both hemispheres were enlarged by 22-23%. Hence, unilateral destruction of the nigral dopamine-containing neurons stimulated the neuroglia (particularly astroglia) in the caudate nuclei, especially on the side of damage.
Collapse
Affiliation(s)
- R M Khudoerkov
- Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
41
|
Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-γ agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett 2012; 213:332-44. [DOI: 10.1016/j.toxlet.2012.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/13/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
42
|
Dementia in Parkinson's Disease Correlates with α-Synuclein Pathology but Not with Cortical Astrogliosis. PARKINSONS DISEASE 2012; 2012:420957. [PMID: 22577599 PMCID: PMC3347756 DOI: 10.1155/2012/420957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/01/2012] [Indexed: 12/31/2022]
Abstract
Dementia is a common feature in Parkinson's disease (PD) and is considered to be the result of limbic and cortical Lewy bodies and/or Alzheimer changes. Astrogliosis may also affect the development of dementia, since it correlates well with declining cognition in Alzheimer patients. Thus, we determined whether cortical astrogliosis occurs in PD, whether it is related to dementia, and whether this is reflected by the presence of glial fibrillary acidic protein (GFAP) and vimentin in cerebrospinal fluid (CSF). We have examined these proteins by immunohistochemistry in the frontal cortex and by Western blot in CSF of cases with PD, PD with dementia (PDD), dementia with Lewy bodies (DLB) and nondemented controls. We were neither able to detect an increase in cortical astrogliosis in PD, PDD, or DLB nor could we observe a correlation between the extent of astrogliosis and the degree of dementia. The levels of GFAP and vimentin in CSF did not correlate to the extent of astrogliosis or dementia. We did confirm the previously identified positive correlation between the presence of cortical Lewy bodies and dementia in PD. In conclusion, we have shown that cortical astrogliosis is not associated with the cognitive decline in Lewy body-related dementia.
Collapse
|
43
|
α-Synuclein potentiates interleukin-1β-induced CXCL10 expression in human A172 astrocytoma cells. Neurosci Lett 2011; 507:133-6. [PMID: 22178859 DOI: 10.1016/j.neulet.2011.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 02/01/2023]
Abstract
Neuroinflammation and neuronal degeneration observed in Parkinson's disease (PD) has been attributed in part to glial-mediated events. Increased expression of proinflammatory cytokines and abnormal accumulation of the neuronal protein, α-synuclein in the brain are also characteristic of PD. While increasing evidence suggests that astrocytes contribute to neuroinflammation and dopaminergic neuronal degeneration associated with PD, there remains much to learn about these astroglial-mediated events. Therefore, we investigated the in vitro effects of interleukin-1β (IL-1β) and α-synuclein on astroglial expression of interferon-γ inducible protein-10 (CXCL10), a proinflammatory and neurotoxic chemokine. IL-1β-induced CXCL10 protein expression was potentiated by co-exposure to α-synuclein. α-Synuclein did not significantly affect IL-1β-induced CXCL10 mRNA expression, but did mediate increased CXCL10 mRNA stability, which may explain, in part, the increased levels of secreted CXCL10 protein. Future investigations are warranted to more fully define the mechanism by which α-synuclein enhances IL-1β-induced astroglial CXCL10 expression. These findings highlight the importance of α-synuclein in modulating inflammatory events in astroglia. These events may be particularly relevant to the pathology of CNS disorders involving α-synuclein accumulation, including PD and HIV-1 associated dementia.
Collapse
|
44
|
Anastasía A, Wojnacki J, de Erausquin GA, Mascó DH. Glial cell-line derived neurotrophic factor is essential for electroconvulsive shock-induced neuroprotection in an animal model of Parkinson's disease. Neuroscience 2011; 195:100-11. [PMID: 21871541 DOI: 10.1016/j.neuroscience.2011.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/18/2011] [Accepted: 08/09/2011] [Indexed: 01/25/2023]
Abstract
Sustained motor improvement in human patients with idiopathic Parkinson's disease has been described following electroconvulsive shock (ECS) treatment. In rats, ECS stimulates the expression of various trophic factors (TFs), some of which have been proposed to exert neuroprotective actions. We previously reported that ECS protects the integrity of the rat nigrostriatal dopaminergic system against 6-hydroxydopamine (6-OHDA)-induced toxicity; in order to shed light into its neuroprotective mechanism, we studied glial cell-line derived neurotrophic factor (GDNF) levels (the most efficient TF for dopaminergic neurons) in the substantia nigra (SN) and striatum of 6-OHDA-injected animals with or without ECS treatment. 6-OHDA injection decreased GDNF levels in the SN control animals, but not in those receiving chronic ECS, suggesting that changes in GDNF expression may participate in the ECS neuroprotective mechanism. To evaluate this possibility, we inhibit GDNF by infusion of GDNF function blocking antibodies in the SN of 6-OHDA-injected animals treated with ECS (or sham ECS). Animals were sacrificed 7 days after 6-OHDA infusion, and the integrity of the nigrostriatal system was studied by tyrosine hydroxylase immunohistochemistry and Cresyl Violet staining. Neuroprotection observed in ECS-treated animals was inhibited by GDNF antibodies in the SN. These results robustly demonstrate that GDNF is essential for the ECS neuroprotective effect observed in 6-OHDA-injected animals.
Collapse
Affiliation(s)
- A Anastasía
- Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, ZC: X5016GCA, Córdoba, Argentina
| | | | | | | |
Collapse
|
45
|
Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C. In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-. Eur J Neurosci 2011; 33:1551-60. [DOI: 10.1111/j.1460-9568.2011.07639.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat. Neuroscience 2011; 175:251-61. [DOI: 10.1016/j.neuroscience.2010.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 11/20/2022]
|
47
|
Tiong CX, Lu M, Bian JS. Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 2011; 161:467-80. [PMID: 20735429 DOI: 10.1111/j.1476-5381.2010.00887.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H(2)S) is a novel neuromodulator. The present study aimed to investigate the protective effect of H(2)S against cell injury induced by 6-hydroxydopamine (6-OHDA), a selective dopaminergic neurotoxin often used to establish a model of Parkinson's disease for studying the underlying mechanisms of this condition. EXPERIMENTAL APPROACH Cell viability in SH-SY5Y cells was measured using MTT assay. Western blot analysis and pharmacological manipulation were employed to study the signalling mechanisms. KEY RESULTS Treatment of SH-SY5Y cells with 6-OHDA (50-200 microM) for 12 h decreased cell viability. Exogenous application of NaHS (an H(2)S donor, 100-1000 microM) or overexpression of cystathionine beta-synthase (a predominant enzyme to produce endogenous H(2)S in SH-SY5Y cells) protected cells against 6-OHDA-induced cell apoptosis and death. Furthermore, NaHS reversed 6-OHDA-induced loss of tyrosine hydroxylase. Western blot analysis showed that NaHS reversed the down-regulation of PKCalpha, epsilon and Akt and the up-regulation of PKCdelta in 6-OHDA-treated cells. Blockade of PKCalpha with Gö6976 (2 microM), PKCepsilon with EAVSLKPT (200 microM) or PI3K with LY294002 (20 microM) reduced the protective effects of H(2)S. However, inhibition of PKCdelta with rottlerin (5 microM) failed to affect 6-OHDA-induced cell injury. These data suggest that the protective effects of NaHS mainly resulted from activation of PKCalpha, epsilon and PI3K/Akt pathway. In addition, NaHS-induced Akt phosphorylation was significantly attenuated by Gö6976 and EAVSLKPT, suggesting that the activation of Akt by NaHS is PKCalpha, epsilon-dependent. CONCLUSIONS AND IMPLICATIONS H(2)S protects SH-SY5Y cells against 6-OHDA-induced cell injury by activating the PKCalpha, epsilon/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chi Xin Tiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
48
|
Wachter B, Schürger S, Rolinger J, von Ameln-Mayerhofer A, Berg D, Wagner HJ, Kueppers E. Effect of 6-hydroxydopamine (6-OHDA) on proliferation of glial cells in the rat cortex and striatum: evidence for de-differentiation of resident astrocytes. Cell Tissue Res 2010; 342:147-60. [DOI: 10.1007/s00441-010-1061-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/13/2010] [Indexed: 11/24/2022]
|
49
|
Tousi NS, Buck DJ, Zecca L, Davis RL. Neuromelanin inhibits CXCL10 expression in human astroglial cells. Neurosci Lett 2010; 486:47-50. [PMID: 20851166 DOI: 10.1016/j.neulet.2010.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates neuroinflammation is instrumental in the pathogenesis of Parkinson's disease (PD). In PD, there is selective degeneration of neuromelanin (NM)-containing dopamine neurons. Neuromelanin is predominantly cytoprotective within dopaminergic neurons, whereas, NM released from damaged neurons activates microglia. However, the effects of NM on astroglial cells remain largely unknown. Astroglia are essential to neuronal homeostasis and responsive to injury, in part, through secretion of chemokines, including interferon γ inducible protein-10 (CXCL10). Thus, we used an in vitro approach to identify the effects of NM on TNFα-induced CXCL10 expression in human astroglial cells. TNFα-induced CXCL10 expression was inhibited in NM exposed cells. Additionally, TNFα-induced NF-кB activation was inhibited by NM. Given that CXCL10 expression is NF-кB-dependent in human astroglial cells, these findings suggest that NM may inhibit CXCL10 expression, in part, through an NF-кB-dependent mechanism. While the in vivo consequences of NM mediated effects on astroglial CXCL10 expression remain to be fully elucidated, insights obtained in this study further our understanding of the effects of NM on inflammatory signaling in human astroglial cells.
Collapse
Affiliation(s)
- Neda Saffarian Tousi
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, United States
| | | | | | | |
Collapse
|
50
|
Anastasía A, Torre L, de Erausquin GA, Mascó DH. Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson's disease. J Neurochem 2009; 109:755-65. [PMID: 19245661 DOI: 10.1111/j.1471-4159.2009.06001.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enriched environment (EE) is neuroprotective in several animal models of neurodegeneration. It stimulates the expression of trophic factors and modifies the astrocyte cell population which has been said to exert neuroprotective effects. We have investigated the effects of EE on 6-hydroxydopamine (6-OHDA)-induced neuronal death after unilateral administration to the medial forebrain bundle, which reaches 85-95% of dopaminergic neurons in the substantia nigra after 3 weeks. Continuous exposure to EE 3 weeks before and after 6-OHDA injection prevents neuronal death (assessed by tyrosine hydroxylase staining), protects the nigrostriatal pathway (assessed by Fluorogold retrograde labeling) and reduces motor impairment. Four days after 6-OHDA injection, EE was associated with a marked increase in glial fibrillary acidic protein staining and prevented neuronal death (assessed by Fluoro Jade-B) but not partial loss of tyrosine hydroxylase staining in the anterior substantia nigra. These results robustly demonstrate that EE preserves the entire nigrostriatal system against 6-OHDA-induced toxicity, and suggests that an early post-lesion astrocytic reaction may participate in the neuroprotective mechanism.
Collapse
Affiliation(s)
- Agustín Anastasía
- Facultad de Ciencias Exactas, Centro de Biología Celular y Molecular, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | |
Collapse
|