1
|
Zhou M, Li TS, Abe H, Akashi H, Suzuki R, Bando Y. Expression levels of K ATP channel subunits and morphological changes in the mouse liver after exposure to radiation. World J Exp Med 2024; 14:90374. [PMID: 38948415 PMCID: PMC11212743 DOI: 10.5493/wjem.v14.i2.90374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND ATP sensitive K+ (KATP) channels are ubiquitously distributed in various of cells and tissues, including the liver. They play a role in the pathogenesis of myocardial and liver ischemia. AIM To evaluate the radiation-induced changes in the expression of KATP channel subunits in the mouse liver to understand the potential role of KATP channels in radiation injury. METHODS Adult C57BL/6 mice were randomly exposed to γ-rays at 0 Gy (control, n = 2), 0.2 Gy (n = 6), 1 Gy (n = 6), or 5 Gy (n = 6). The livers were removed 3 and 24 h after radiation exposure. Hematoxylin and eosin staining was used for morphological observation; immunohistochemical staining was applied to determine the expression of KATP channel subunits in the liver tissue. RESULTS Compared with the control group, the livers exposed to 0.2 Gy γ-ray showed an initial increase in the expression of Kir6.1 at 3 h, followed by recovery at 24 h after exposure. Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h. However, the expression of Kir6.2, SUR1, or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses. CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses, suggesting a potential role for them in radiation-induced liver injury.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- Sendai Old Age Refresh Station, A Long-term Care Health Facility, Sendai 981-1105, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
2
|
Le Ribeuz H, Masson B, Dutheil M, Boët A, Beauvais A, Sabourin J, De Montpreville VT, Capuano V, Mercier O, Humbert M, Montani D, Antigny F. Involvement of SUR2/Kir6.1 channel in the physiopathology of pulmonary arterial hypertension. Front Cardiovasc Med 2023; 9:1066047. [PMID: 36704469 PMCID: PMC9871631 DOI: 10.3389/fcvm.2022.1066047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Aims We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Antoine Beauvais
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Orsay, France
| | | | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
3
|
Weiss M, Nikisher B, Haran H, Tefft K, Adams J, Edwards JG. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:76-87. [PMID: 36336373 DOI: 10.1016/j.lssr.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Space travel increases galactic cosmic ray exposure to flight crews and this is significantly elevated once travel moves beyond low Earth orbit. This includes combinations of high energy protons and heavy ions such as 56Fe or 16O. There are distinct differences in the biological response to low-energy transfer (x-rays) or high-energy transfer (High-LET). However, given the relatively low fluence rate of exposure during flight operations, it might be possible to manage these deleterious effects using small molecules currently available. Virtually all reports to date examining small molecule management of radiation exposure are based on low-LET challenges. To that end an FDA approved drug library (725 drugs) was used to perform a high throughput screen of cultured cells following exposure to galactic cosmic radiation. The H9c2 myoblasts, ES-D3 pluripotent cells, and Hy926 endothelial cell lines were exposed to a single exposure (75 cGy) using the 5-ion GCRsim protocol developed at the NASA Space Radiation Laboratory (NSRL). Following GCR exposure cells were maintained for up to two weeks. For each drug (@10µM), a hierarchical cumulative score was developed incorporating measures of mitochondrial and cellular function, oxidant stress and cell senescence. The top 160 scores were retested following a similar protocol using 1µM of each drug. Within the 160 drugs, 33 are considered to have an anti-inflammatory capacity, while others also indirectly suppressed pro-inflammatory pathways or had noted antioxidant capacity. Lead candidates came from different drug classes that included angiotensin converting enzyme inhibitors or AT1 antagonists, COX2 inhibitors, as well as drugs mediated by histamine receptors. Surprisingly, different classes of anti-diabetic medications were observed to be useful including sulfonylureas and metformin. Using a hierarchical decision structure, we have identified several lead candidates. That no one drug or even drug class was completely successful across all parameters tested suggests the complexity of managing the consequences of galactic cosmic radiation exposure.
Collapse
Affiliation(s)
- M Weiss
- Department of Physiology, New York Medical College, Valhalla, New York
| | - B Nikisher
- Department of Physiology, New York Medical College, Valhalla, New York
| | - H Haran
- Department of Physiology, New York Medical College, Valhalla, New York
| | - K Tefft
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J Adams
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York.
| |
Collapse
|
4
|
de Siqueira DVF, Strazza PS, Benites NM, Leão RM. Salicylate activates KATP channels and reduces spontaneous firing in glycinergic cartwheel neurons in the dorsal cochlear nucleus of rats. Eur J Pharmacol 2022; 926:175026. [DOI: 10.1016/j.ejphar.2022.175026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
|
5
|
Senik MH, Abu IF, Fadhullah W. Analysis of K ATP Channels Opening Probability of Hippocampus Cells Treated with Kainic Acid. Malays J Med Sci 2021; 28:15-26. [PMID: 33679216 PMCID: PMC7909348 DOI: 10.21315/mjms2021.28.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 01/14/2023] Open
Abstract
Background Kainic acid (KA)-induced seizures may be a valuable tool in the assessment of anti-epileptic drug efficacy in complex partial seizures. This study investigated the effects of KA on ATP-sensitive K+ (KATP) channels opening probability (NPo), which plays a crucial role in neuronal activities. Methods For the optimisation and validation protocol, β-cells were plated onto 35 mm plastic petri dishes and maintained in RPMI-1640 media supplemented with 10 mM glucose, 10% FCS and 25 mM of N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES). The treatment effects of 10 mM glucose and 30 μM fluoxetine on KATP channels NPo of β-cells were assessed via cell-attached patch-clamp recordings. For hippocampus cell experiments, hippocampi were harvested from day 17 of maternal Lister-hooded rat foetus, and then transferred to a Ca2+ and Mg2+-free HEPES-buffered Hank's salt solution (HHSS). The dissociated cells were cultured and plated onto a 25 mm round cover glasses coated with poly-d-lysine (0.1 mg/mL) in a petri dish. The KATP channels NPo of hippocampus cells when perfused with 1 mM and 10 mM of KA were determined. Results NPo of β-cells showed significant decreasing patterns (P < 0.001) when treated with 10 mM glucose 0.048 (0.027) as well as 30 μM fluoxetine 0.190 (0.141) as compared to basal counterpart. In hippocampus cell experiment, a significant increase (P < 0.001) in mean NPo 2.148 (0.175) of neurons when applied with 1 mM of KA as compared to basal was observed. Conclusion The two concentrations of KA used in the study exerted contrasting effects toward the mean of NPo. It is hypothesised that KA at lower concentration (1 mM) opens more KATP channels, leading to hyperpolarisation of the neurons, which may prevent neuronal hyper excitability. No effect was shown in 10 mM KA treatment, suggesting that only lower than 10 mM KA produced significant changes in KATP channels. This implies further validation of KA concentration to be used in the future.
Collapse
Affiliation(s)
- Mohd Harizal Senik
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Widad Fadhullah
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Christensen SL, Munro G, Petersen S, Shabir A, Jansen-Olesen I, Kristensen DM, Olesen J. ATP sensitive potassium (K ATP) channel inhibition: A promising new drug target for migraine. Cephalalgia 2020; 40:650-664. [PMID: 32418458 DOI: 10.1177/0333102420925513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recently, the adenosine triphosphate (ATP) sensitive potassium channel opener levcromakalim was shown to induce migraine attacks with a far higher incidence than any previous provoking agent such as calcitonin gene-related peptide. Here, we show efficacy of ATP sensitive potassium channel inhibitors in two validated rodent models of migraine. METHODS In female spontaneous trigeminal allodynic rats, the sensitivity of the frontal region of the head was tested by an electronic von Frey filament device. In mice, cutaneous hypersensitivity was induced by repeated glyceryl trinitrate or levcromakalim injections over nine days, as measured with von Frey filaments in the hindpaw. Release of calcitonin gene-related peptide from dura mater and trigeminal ganglion was studied ex vivo. RESULTS The ATP sensitive potassium channel inhibitor glibenclamide attenuated the spontaneous cephalic hypersensitivity in spontaneous trigeminal allodynic rats and glyceryl trinitrate-induced hypersensitivity of the hindpaw in mice. It also inhibited CGRP release from dura mater and the trigeminal ganglion isolated from spontaneous trigeminal allodynic rats. The hypersensitivity was also diminished by the structurally different ATP sensitive potassium channel inhibitor gliquidone. Mice injected with the ATP sensitive potassium channel opener levcromakalim developed a progressive hypersensitivity that was completely blocked by glibenclamide, confirming target engagement. CONCLUSION The results suggest that ATP sensitive potassium channel inhibitors could be novel and highly effective drugs in the treatment of migraine.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Gordon Munro
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Steffen Petersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Anmool Shabir
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - David M Kristensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark.,Univ Rennes, Inserm, EHESP, Irset (Research Center for Environmental and Occupational Health), Rennes, France
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
7
|
Zhou M, Yoshikawa K, Akashi H, Miura M, Suzuki R, Li TS, Abe H, Bando Y. Localization of ATP-sensitive K + channel subunits in rat liver. World J Exp Med 2019; 9:14-31. [PMID: 31938690 PMCID: PMC6955576 DOI: 10.5493/wjem.v9.i2.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels were originally found in cardiac myocytes by Noma in 1983. KATP channels were formed by potassium ion-passing pore-forming subunits (Kir6.1, Kir6.2) and regulatory subunits SUR1, SU2A and SUR2B. A number of cells and tissues have been revealed to contain these channels including hepatocytes, but detailed localization of these subunits in different types of liver cells was still uncertain.
AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.
METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography. Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis, seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining. Four of Wistar rats were used for the isolation of hepatic stellate cells (HSCs) and Kupffer cells for both primary culture and immunocytochemistry.
RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits, i.e. Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B, were detected in liver. Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells, while SUR1, SUR2A, and SUR2B were mainly localized to sinusoidal lining cells, such as HSCs, Kupffer cells, and sinusoidal endothelial cells. Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane. Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs. These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells. The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells. In addition, five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.
CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels. This is applicable to hepatocytes, HSCs, various types of Kupffer cells and sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kiwamu Yoshikawa
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mitsutaka Miura
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- TRUST, A Long-Term Care Health Facility, Sendai 980-0011, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
8
|
Kharade SV, Sanchez-Andres JV, Fulton MG, Shelton EL, Blobaum AL, Engers DW, Hofmann CS, Dadi PK, Lantier L, Jacobson DA, Lindsley CW, Denton JS. Structure-Activity Relationships, Pharmacokinetics, and Pharmacodynamics of the Kir6.2/SUR1-Specific Channel Opener VU0071063. J Pharmacol Exp Ther 2019; 370:350-359. [PMID: 31201216 PMCID: PMC6691189 DOI: 10.1124/jpet.119.257204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023] Open
Abstract
Glucose-stimulated insulin secretion from pancreatic β-cells is controlled by ATP-regulated potassium (KATP) channels composed of Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits. The KATP channel-opener diazoxide is FDA-approved for treating hyperinsulinism and hypoglycemia but suffers from off-target effects on vascular KATP channels and other ion channels. The development of more specific openers would provide critically needed tool compounds for probing the therapeutic potential of Kir6.2/SUR1 activation. Here, we characterize a novel scaffold activator of Kir6.2/SUR1 that our group recently discovered in a high-throughput screen. Optimization efforts with medicinal chemistry identified key structural elements that are essential for VU0071063-dependent opening of Kir6.2/SUR1. VU0071063 has no effects on heterologously expressed Kir6.1/SUR2B channels or ductus arteriole tone, indicating it does not open vascular KATP channels. VU0071063 induces hyperpolarization of β-cell membrane potential and inhibits insulin secretion more potently than diazoxide. VU0071063 exhibits metabolic and pharmacokinetic properties that are favorable for an in vivo probe and is brain penetrant. Administration of VU0071063 inhibits glucose-stimulated insulin secretion and glucose-lowering in mice. Taken together, these studies indicate that VU0071063 is a more potent and specific opener of Kir6.2/SUR1 than diazoxide and should be useful as an in vitro and in vivo tool compound for investigating the therapeutic potential of Kir6.2/SUR1 expressed in the pancreas and brain.
Collapse
Affiliation(s)
- Sujay V Kharade
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Juan Vicente Sanchez-Andres
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Mark G Fulton
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Elaine L Shelton
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Anna L Blobaum
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Darren W Engers
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Christopher S Hofmann
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Prasanna K Dadi
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Louise Lantier
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - David A Jacobson
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Craig W Lindsley
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| | - Jerod S Denton
- Departments of Anesthesiology (S.V.K., J.S.D.) and Pediatrics (E.L.S.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Jaume I University, Castellon de la Plana, Spain (J.V.S.-A.); Departments of Chemistry (M.G.F., C.W.L.), Pharmacology (M.G.F., A.L.B., D.W.E., C.S.H., C.W.L., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.), and Mouse Metabolic Phenotyping Core (L.L.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Center for Neuroscience Drug Discovery, Franklin, Tennessee (D.W.E., A.L.B., C.W.L.)
| |
Collapse
|
9
|
Subbotina E, Yang HQ, Gando I, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of ABCC9 variants identified in sudden unexpected natural death. Forensic Sci Int 2019; 298:80-87. [PMID: 30878466 DOI: 10.1016/j.forsciint.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic variation in ion channel genes ('channelopathies') are often associated with inherited arrhythmias and sudden death. Genetic testing ('molecular autopsies') of channelopathy genes can be used to assist in determining the likely causes of sudden unexpected death. However, different in silico approaches can yield conflicting pathogenicity predictions and assessing their impact on ion channel function can assist in this regard. METHODS AND RESULTS We performed genetic testing of cases of sudden expected death in the New York City metropolitan area and found four rare or novel variants in ABCC9, which codes for the regulatory SUR2 subunit of KATP channels. All were missense variants, causing amino acid changes in the protein. Three of the variants (A355S, M941V, and K1379Q) were in cases of infants less than six-months old and one (H1305Y) was in an adult. The predicted pathogenicities of the variants were conflicting. We have introduced these variants into a human SUR2A cDNA, which we coexpressed with the Kir6.2 pore-forming subunit in HEK-293 cells and subjected to patch clamp and biochemical assays. Each of the four variants led to gain-of-function phenotypes. The A355S and M941V variants increased in the overall patch current. The sensitivity of the KATP channels to inhibitory 'cytosolic' ATP was repressed for the M941V, H1305Y and K1379Q variants. None of the variants had any effect on the unitary KATP channel current or the surface expression of KATP channels, as determined with biotinylation assays, suggesting that all of the variants led to an enhanced open state. CONCLUSIONS All four variants caused a gain-of-function phenotype. Given the expression of SUR2-containing KATP channels in the heart and specialized cardiac conduction, vascular smooth muscle and respiratory neurons, it is conceivable that electrical silencing of these cells may contribute to the vulnerability element, which is a component of the triple risk model of sudden explained death in infants. The gain-of-function phenotype of these ABCC9 variants should be considered when assessing their potential pathogenicity.
Collapse
Affiliation(s)
| | - Hua-Qian Yang
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA
| | - Ivan Gando
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA
| | - Nori Williams
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - Barbara A Sampson
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - Yingying Tang
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - William A Coetzee
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA; Departments of Physiology & Neuroscience NYU School of Medicine, New York, NY 10016 USA; Departments of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA.
| |
Collapse
|
10
|
Wu YN, Shen KZ, Johnson SW. Differential actions of AMP kinase on ATP-sensitive K + currents in ventral tegmental area and substantia nigra zona compacta neurons. Eur J Neurosci 2017; 46:2746-2753. [PMID: 29057540 DOI: 10.1111/ejn.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
ATP-sensitive K+ (K-ATP) channels play significant roles in regulating the excitability of dopamine neurons in the substantia nigra zona compacta (SNC). We showed previously that K-ATP channel function is up-regulated by AMP-activated protein kinase (AMPK). This study extended these studies to the neurons adjacent to the SNC in the ventral tegmental area (VTA). Using patch pipettes to record whole-cell currents in slices of rat midbrain, we found that the AMPK activator A769662 increased the amplitude of currents evoked by the K-ATP channel opener diazoxide in presumed dopamine-containing VTA neurons. However, current evoked by diazoxide with A769662 was significantly smaller in VTA neurons compared to SNC neurons. Moreover, a significantly lower proportion of VTA neurons responded to diazoxide with outward current. However, A769662 was able to increase the incidence of diazoxide-responsive neurons in the VTA. In contrast, A769662 did not potentiate diazoxide-evoked currents in presumed non-dopamine VTA neurons. These results show that AMPK activation augments K-ATP currents in presumed dopamine neurons in the VTA and SNC, although diazoxide-evoked currents remain less robust in the VTA. We conclude that K-ATP channels may play important physiological roles in VTA and SNC dopamine neurons.
Collapse
Affiliation(s)
- Yan-Na Wu
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ke-Zhong Shen
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Steven W Johnson
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Veterans Affairs Portland Health Care System, Portland, OR, 97239, USA
| |
Collapse
|
11
|
Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife 2016; 5. [PMID: 27995895 PMCID: PMC5199195 DOI: 10.7554/elife.21616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI:http://dx.doi.org/10.7554/eLife.21616.001
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Matthew Rm Mullen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
12
|
Griffith CM, Xie MX, Qiu WY, Sharp AA, Ma C, Pan A, Yan XX, Patrylo PR. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer’s disease. Neuroscience 2016; 336:81-101. [DOI: 10.1016/j.neuroscience.2016.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 12/21/2022]
|
13
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
14
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
15
|
Nelson PT, Wang WX, Wilfred BR, Wei A, Dimayuga J, Huang Q, Ighodaro E, Artiushin S, Fardo DW. Novel human ABCC9/SUR2 brain-expressed transcripts and an eQTL relevant to hippocampal sclerosis of aging. J Neurochem 2015; 134:1026-39. [PMID: 26115089 DOI: 10.1111/jnc.13202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 01/08/2023]
Abstract
ABCC9 genetic polymorphisms are associated with increased risk for various human diseases including hippocampal sclerosis of aging. The main goals of this study were 1 > to detect the ABCC9 variants and define the specific 3' untranslated region (3'UTR) for each variant in human brain, and 2 > to determine whether a polymorphism (rs704180) associated with risk for hippocampal sclerosis of aging pathology is also associated with variation in ABCC9 transcript expression and/or splicing. Rapid amplification of ABCC9 cDNA ends (3'RACE) provided evidence of novel 3' UTR portions of ABCC9 in human brain. In silico and experimental studies were performed focusing on the single nucleotide polymorphism, rs704180. Analyses from multiple databases, focusing on rs704180 only, indicated that this risk allele is a local expression quantitative trait locus (eQTL). Analyses of RNA from human brains showed increased ABCC9 transcript levels in individuals with the risk genotype, corresponding with enrichment for a shorter 3' UTR which may be more stable than variants with the longer 3' UTR. MicroRNA transfection experiments yielded results compatible with the hypothesis that miR-30c causes down-regulation of SUR2 transcripts with the longer 3' UTR. Thus we report evidence of complex ABCC9 genetic regulation in brain, which may be of direct relevance to human disease. ABCC9 gene variants are associated with increased risk for hippocampal sclerosis of aging (HS-Aging--a prevalent brain disease with symptoms that mimic Alzheimer's disease). We describe novel ABCC9 variants in human brain, corresponding to altered 3'UTR length, which could lead to targeting by miR-30c. We also determined that the HS-Aging risk mutation is associated with variation in ABCC9 transcript expression.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Bernard R Wilfred
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Angela Wei
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - James Dimayuga
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Qingwei Huang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Eseosa Ighodaro
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Sergey Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
16
|
Da-bu-yin-wan and qian-zheng-san to neuroprotect the mouse model of Parkinson's disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:729195. [PMID: 25610480 PMCID: PMC4290155 DOI: 10.1155/2014/729195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/03/2014] [Indexed: 12/01/2022]
Abstract
Da-Bu-Yin-Wan (DBYW) and Qian-Zheng-San (QZS), two classic traditional Chinese medicinal formulas, were clinically employed to treat Parkinson's disease (PD). Our previous studies demonstrated neuroprotective effects of them on mitochondrial function in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The purpose of this research was to investigate their possible mechanisms in the light of mitochondrial ATP-sensitive potassium (mitoKATP) channels. The neuroprotective effect of DBYW and QZS on dopamine (DA) neurons in substantia nigra (SN) in the MPTP-induced PD mice was investigated by behavioral test (pole test) and immunohistochemistry. Adenosine triphosphate (ATP) level in the midbrain tissue was detected by firefly luciferase method. MitoKATP channel subunits SUR1 and Kir6.2 mRNA and protein expressions were tested by real-time PCR (RT-PCR) and Western blot. It was observed that DBYW and/or QZS served to ameliorate MPTP-induced behavioral impairment and prevent the loss of substantia nigra dopamine neurons, as well as increase ATP level in the midbrain tissue and downregulate SUR1 expression at mRNA and protein levels with no marked influence on Kir6.2. We concluded that DBYW and QZS exhibit neuroprotective effects probably through the regulation of ATP level and mitoKATP channel subunit expressions.
Collapse
|
17
|
Koska P, Dojcsák Kiss-Tóth E, Juhász Szalai A, Kovács GL, Barkai L, Rácz O, Fodor B. Brain glucose sensing and counterregulatory response to hypoglycaemia. ACTA PHYSIOLOGICA HUNGARICA 2013; 100:133-9. [PMID: 23708945 DOI: 10.1556/aphysiol.100.2013.2.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An important obstacle to achieve optimal glycaemic control in diabetics on intensive insulin therapy is the frequent occurrence of insulin induced hypoglycaemic events. In healthy subjects and in diabetics without autonomic neuropathy hypoglycaemia activates the sympathetic nervous system, resulting in epinephrine and glucagon release. Both hormones increase hepatic glucose production and this counterregulatory response is of key importance of glucose homeostasis. Recent research shed light on the fact that antecedent hypoglycaemic episodes play pivotal role in hypoglycaemia associated autonomic failure (HAAF). In this condition the sympatho-adrenal response to decreased blood glucose level is blunted. The existence of HAAF clearly indicates that the nervous system contributes to glucose homeostasis in a substantial manner. This review outlines the mechanisms of both peripheral and central neuronal glucose sensing and of neural pathways involved in the counterregulatory response.
Collapse
Affiliation(s)
- P Koska
- University of Miskolc Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Care Miskolc Hungary
| | | | | | | | | | | | | |
Collapse
|