1
|
Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol 2024; 15:1330678. [PMID: 38322262 PMCID: PMC10844444 DOI: 10.3389/fimmu.2024.1330678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The damage to the central nervous system and dysfunction of the body caused by spinal cord injury (SCI) are extremely severe. The pathological process of SCI is accompanied by inflammation and injury to nerve cells. Current evidence suggests that oxidative stress, resulting from an increase in the production of reactive oxygen species (ROS) and an imbalance in its clearance, plays a significant role in the secondary damage during SCI. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulatory molecule for cellular redox. This review summarizes recent advancements in the regulation of ROS-Nrf2 signaling and focuses on the interaction between ROS and the regulation of different modes of neuronal cell death after SCI, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we highlight the pathways through which materials science, including exosomes, hydrogels, and nanomaterials, can alleviate SCI by modulating ROS production and clearance. This review provides valuable insights and directions for reducing neuronal cell death and alleviating SCI through the regulation of ROS and oxidative stress.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, the Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Jiangning Clinical Teaching Hospitals of Jiangsu Vocational College of Medicine, Nanjing, China
| |
Collapse
|
2
|
Zhao JY, Sheng XL, Li CJ, Qin T, He RD, Dai GY, Cao Y, Lu HB, Duan CY, Hu JZ. Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway. Neural Regen Res 2023; 18:1553-1562. [PMID: 36571362 PMCID: PMC10075126 DOI: 10.4103/1673-5374.360245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury. However, its effect on spinal cord injury in aged mice remains unclear. Considering the essential role of angiogenesis during the regeneration process, we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells, thereby promoting microvascular regeneration in aged mice after spinal cord injury. In this study, we established young and aged mouse models of contusive spinal cord injury using a modified Allen method. We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord. Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro. Furthermore, intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord, thereby improving neurological function. The role of metformin was reversed by compound C, an adenosine monophosphate-activated protein kinase inhibitor, both in vivo and in vitro, suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury. These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway, thereby improving the neurological function of aged mice after spinal cord injury.
Collapse
Affiliation(s)
- Jin-Yun Zhao
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Xiao-Long Sheng
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Cheng-Jun Li
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Tian Qin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Run-Dong He
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Guo-Yu Dai
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Yong Cao
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health; Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chun-Yue Duan
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Jian-Zhong Hu
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15:385-399. [PMID: 37342219 PMCID: PMC10277963 DOI: 10.4252/wjsc.v15.i5.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.
Collapse
Affiliation(s)
- Li-Yi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| |
Collapse
|
4
|
Coyoy-Salgado A, Orozco-Barrios C, Sánchez-Torres S, Olayo MG, Cruz GJ, Morales-Corona J, Olayo R, Diaz-Ruiz A, Ríos C, Alvarez-Mejia L, Mondragón-Lozano R, Morales-Guadarrama A, Alonso-García AL, Fabela-Sánchez O, Salgado-Ceballos H. Gene expression and locomotor recovery in adult rats with spinal cord injury and plasma-synthesized polypyrrole/iodine application combined with a mixed rehabilitation scheme. Front Neurol 2023; 14:1124245. [PMID: 37288064 PMCID: PMC10243140 DOI: 10.3389/fneur.2023.1124245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Spinal cord injury (SCI) can cause paralysis, for which effective therapeutic strategies have not been developed yet. The only accepted strategy for patients is rehabilitation (RB), although this does not allow complete recovery of lost functions, which makes it necessary to combine it with strategies such as plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical properties than PPy synthesized by conventional methods. After SCI in rats, PPy/I promotes functional recovery. Therefore, the purpose of this study was to increase the beneficial effects of both strategies and identify which genes activate PPy/I when applied alone or in combination with a mixed scheme of RB by swimming and enriched environment (SW/EE) in rats with SCI. Methods Microarray analysis was performed to identify mechanisms of action underlying the effects of PPy/I and PPy/I+SW/EE on motor function recovery as evaluated by the BBB scale. Results Results showed robust upregulation by PPy/I in genes related to the developmental process, biogenesis, synapse, and synaptic vesicle trafficking. In addition, PPy/I+SW/EE increased the expression of genes related to proliferation, biogenesis, cell development, morphogenesis, cell differentiation, neurogenesis, neuron development, and synapse formation processes. Immunofluorescence analysis showed the expression of β-III tubulin in all groups, a decreased expression of caspase-3 in the PPy/I group and GFAP in the PPy/I+SW/EE group (p < 0.05). Better preservation of nerve tissue was observed in PPy/I and PPy/SW/EE groups (p < 0.05). In the BBB scale, the control group scored 1.72 ± 0.41, animals with PPy/I treatment scored 4.23 ± 0.33, and those with PPy/I+SW/EE scored 9.13 ± 0.43 1 month after follow-up. Conclusion Thus, PPy/I+SW/EE could represent a therapeutic alternative for motor function recovery after SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - María Guadalupe Olayo
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Guillermo Jesus Cruz
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Juan Morales-Corona
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Roberto Olayo
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Camilo Ríos
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Rodrigo Mondragón-Lozano
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Electrical Engineering Department, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | | | - Omar Fabela-Sánchez
- Researchers for Mexico CONACyT-Centro de Investigación en Química Aplicada, Department of Chemistry Macromolecules and Nanomaterials, Saltillo, Mexico
| | - Hermelinda Salgado-Ceballos
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| |
Collapse
|
5
|
Li L, Mu J, Zhang Y, Zhang C, Ma T, Chen L, Huang T, Wu J, Cao J, Feng S, Cai Y, Han M, Gao J. Stimulation by Exosomes from Hypoxia Preconditioned Human Umbilical Vein Endothelial Cells Facilitates Mesenchymal Stem Cells Angiogenic Function for Spinal Cord Repair. ACS NANO 2022; 16:10811-10823. [PMID: 35786851 DOI: 10.1021/acsnano.2c02898] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Revascularization treatment is a critical measure for tissue engineering therapies like spinal cord repair. As multipotent stem cells, mesenchymal stem cells (MSCs) have proven to regulate the lesion microenvironment through feedback to the microenvironment signals. The angiogenic capacities of MSCs have been reported to be facilitated by vein endothelial cells in the niche. As emerging evidence demonstrated the roles of exosomes in cell-cell and cell-microenvironment communications, to cope with the ischemia complication for treatment of traumatic spinal cord injury, the study extracts the microenvironment factors to stimulate angiogenic MSCs through using exosomes (EX) derived from hypoxic preconditioned (HPC) human umbilical vein endothelial cells (HUVEC). The HPC treatment with a hypoxia time segment of only 15 min efficiently enhanced the function of EX in facilitating MSCs angiogenesis activity. MSCs stimulated by HPC-EX showed significant tube formation within 2 h, and the in vivo transplantation of the stimulated MSCs elicited effective nerve tissue repair after rat spinal cord transection, which could be attributed to the pro-angiogenic and anti-inflammatory impacts of the MSCs. Through the simulation of MSCs using HPC-tailored HUVEC exosomes, the results proposed an efficient angiogenic nerve tissue repair strategy for spinal cord injury treatment and could provide inspiration for therapies based on stem cells and exosomes.
Collapse
Affiliation(s)
- Liming Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Teng Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Youzhi Cai
- Department of Orthopedics and Center for Sports Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
6
|
Hong JY, Kim SH, Seo Y, Jeon J, Davaa G, Hyun JK, Kim SH. Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats. J Tissue Eng 2022; 13:20417314221086491. [PMID: 35340425 PMCID: PMC8943448 DOI: 10.1177/20417314221086491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) leads to disruption of the blood–spinal cord barrier,
hemorrhage, and tissue edema, which impair blood circulation and induce
ischemia. Angiogenesis after SCI is an important step in the repair of damaged
tissues, and the extent of angiogenesis strongly correlates with the neural
regeneration. Various biomaterials have been developed to promote angiogenesis
signaling pathways, and angiogenic self-assembling peptides are useful for
producing diverse supramolecular structures with tunable functionality. RADA16
(Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological
conditions, is a self-assembling peptide that can provide mechanical support for
tissue regeneration and reportedly has diverse roles in wound healing. In this
study, we applied an injectable form of RADA16 with or without the neuropeptide
substance P to the contused spinal cords of rats and examined angiogenesis
within the damaged spinal cord and subsequent functional improvement.
Histological and immunohistochemical analyses revealed that the inflammatory
cell population in the lesion cavity was decreased, the vessel number and
density around the damaged spinal cord were increased, and the levels of
neurofilaments within the lesion cavity were increased in SCI rats that received
RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover,
real-time PCR analysis of damaged spinal cord tissues showed that IL-10
expression was increased and that locomotor function (as assessed by the Basso,
Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was
significantly improved in the RADA16/SP group compared to the control group. Our
findings indicate that RADA16 modified with substance P effectively stimulates
angiogenesis within the damaged spinal cord and is a candidate agent for
promoting functional recovery post-SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Su Hee Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Medifab Ltd., Seoul, Republic of
Korea
| | - Yoojin Seo
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Rehabilitation Medicine,
College of Medicine, Dankook University, Cheonan, Republic of Korea
- Jung Keun Hyun, Department of
Rehabilitation Medicine, College of Medicine, Dankook University, 119 Dandae-ro,
Anseo-dong, Dongnam-gu, Cheonan 31116, Republic of Korea.
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Korea Institute of Science and
Technology Europe, Saarbrücken, Germany
- NBIT, KU-KIST Graduate School of
Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
PPARα agonist relieves spinal cord injury in rats by activating Nrf2/HO-1 via the Raf-1/MEK/ERK pathway. Aging (Albany NY) 2021; 13:24640-24654. [PMID: 34799468 PMCID: PMC8660597 DOI: 10.18632/aging.203699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
Objective: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). Methods: The SCI rat model was established using modified Allen's method and the changes in rats’ joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. Results: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. Conclusion: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.
Collapse
|
8
|
Intravenous administration of human amniotic mesenchymal stem cells improves outcomes in rats with acute traumatic spinal cord injury. Neuroreport 2021; 31:730-736. [PMID: 32501888 DOI: 10.1097/wnr.0000000000001473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported that intraspinal transplantation of human amniotic mesenchymal stem cells (hAMSCs) promotes functional recovery in a rat model of acute traumatic spinal cord injury (SCI). However, whether intravenous transplantation of hAMSCs also has therapeutic benefit remains uncertain. In this study, we assessed whether intravenous transplantation of hAMSCs improves outcomes in rats with acute traumatic SCI. In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated. Adult female Sprague-Dawley rats were subjected to SCI using a weight drop device, and then hAMSCs or PBS were administered after 2 h via the tail vein. Our results indicated that transplanted hAMSCs could migrate to injured spinal cord lesion. Compared with the control group, hAMSCs transplantation significantly decreased the numbers of ED1 macrophages/microglia and caspase-3 cells, and reduced levels of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6 and IL-1β. In addition, hAMSCs transplantation significantly attenuated Evans blue extravasation, promoted angiogenesis and axonal regeneration. hAMSCs transplantation also significantly improved functional recovery. These results suggest that intravenous administration of hAMSCs provides neuroprotective effects in rats after acute SCI, and could be an alternative therapeutic approach for the treatment of acute SCI.
Collapse
|
9
|
Xu ZX, Zhang LQ, Zhou YN, Chen XM, Xu WH. Histological and functional outcomes in a rat model of hemisected spinal cord with sustained VEGF/NT-3 release from tissue-engineered grafts. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:362-376. [PMID: 31899965 DOI: 10.1080/21691401.2019.1709860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microvascular disturbance, excessive inflammation and gliosis are key pathophysiologic changes in relation to functional status following the traumatic spinal cord injury (SCI). Continuous release of vascular endothelial growth factor (VEGF) to the lesion site was proved be able to promote the vascular remodelling, whereas the effects on reduction of inflammation and gliosis remain unclear. Currently, aiming at exploring the synergistic roles of VEGF and neurotrophin-3 (NT-3) on angiogenesis, anti-inflammation and neural repair, we developed a technique to co-deliver VEGF165 and NT-3 locally with a homotopic graft of tissue-engineered acellular spinal cord scaffold (ASCS) in a hemisected (3 mm in length) SCI model. As the potential in secretion of growth factors (GFs), bone mesenchymal stem cells (BMSCs) were introduced with the aim to enhance the VEGF/NT-3 release. Our data demonstrate that sustained VEGF/NT-3 release from ASCS significantly increases the local levels of VEGF/NT-3 and angiogenesis, regardless of whether it is in combination with BMSCs transplantation that exhibits positive effects on anti-inflammation, axonal outgrowth and locomotor recovery. This study verifies that co-delivery of VEGF/NT-3 reduces inflammation and gliosis in the hemisected spinal cord, promotes axonal outgrowth and results in better locomotor recovery, while the BMSCs transplantation facilitates these functions limitedly.
Collapse
Affiliation(s)
- Zi-Xing Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Li-Qun Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Yi-Nan Zhou
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Xue-Min Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Wei-Hong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
10
|
von Wild T, Brunelli GA, von Wild KR, Löhnhardt M, Catoi C, Catoi AF, Vester JC, Strilciuc S, Trillenberg P. Regeneration of Denervated Skeletal Muscles - Brunelli's CNS-PNS Paradigm. J Med Life 2019; 12:342-353. [PMID: 32025252 PMCID: PMC6993288 DOI: 10.25122/jml-2019-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/20/2019] [Indexed: 12/02/2022] Open
Abstract
The restoration of voluntary muscle activity in posttraumatic paraplegia in both animal experiments and other clinical applications requires reproducibility of a technically-demanding microsurgical procedure, limited by physicians' understanding of Brunelli's spinal cord grafting paradigm. The insufficient clinical investigation of the long-term benefits of the CNS-PNS graft application warrants additional inquiry. The objective of this study is to explore the potential benefits of the first replicated, graft-induced neuroregeneration of denervated skeletal muscle regarding long-term clinical outcomes and to investigate the effect of Cerebrolysin on neuromodulation. A randomized study evaluating 30 rats, approved by the National Animal Ethics Advisory Committee was performed. The medication was administered postoperatively. For 14 days, 12 rats received Cerebrolysin (serum), 11 received NaCl 0.9% (shams), and 7 were controls. For microsurgery, the lateral corticospinal tract T10 was grafted to the denervated internal obliquus abdominal muscle. On day 90, intraoperative proof of reinnervation was observed. On day 100, 15 rats were euthanized for fixation, organ removal, and extensive histology-morphology examination, and the Wei-Lachin statistical procedure was employed. After an open revision of 16 rats, 8 were CMAP positive. After intravenous Vecuronium application, two (Cerebrolysin, NaCl) out of two rats showed an incomplete compound muscle action potential (CMAP) loss due to glutamatergic and cholinergic co-transmission, while two others showed a complete loss of amplitude. Cerebrolysin medication initiated larger restored muscle fiber diameters and less scarring. FB+ neurons were not observed in the brain but were observed in the Rexed laminae. Brunelli's concept was successfully replicated, demonstrating the first graft induced existence of cholinergic and glutamatergic neurotransmission in denervated grafted muscles. Statistics of the histometric count of muscle fibers revealed larger fiber diameters after Cerebrolysin. Brunelli's CNS-PNS experimental concept is suitable to analyze graft-neuroplasticity focused on the voluntary restoration of denervated skeletal muscles in spinal cord injury. Neuroprotection by Cerebrolysin is demonstrated.
Collapse
Affiliation(s)
- Tobias von Wild
- Department of Plastic Reconstructive and Aesthetic Surgery, Hand Surgery, Praxisklinik in der Alster City, Hamburg, Germany
| | - Giorgio A. Brunelli
- School of Specialists in Orthopedics, Traumatology, Hand and Microsurgery, University of Brescia, Brescia, Italy
- Foundation Giorgio Brunelli for Research on Spinal Cord Lesions ONLUS, E.S.C.R.I., Brescia, Italy
| | - Klaus R.H. von Wild
- Department of Neurosurgery, Medical Faculty Westphalia Wilhelm’s University Münster, Münster, Germany
- International Neuroscience Institute, Hanover, Germany
| | - Marlene Löhnhardt
- Department of Plastic and Reconstructive Surgery, Hand Surgery, University Hospital, Hamburg, Germany
| | - Cornel Catoi
- Department of Pathology, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Adriana Florinela Catoi
- Department of Functional Biosciences, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Johannes C. Vester
- Department of Biometry & Clinical Research, idv Data Analysis and Study Planning, Gauting, Germany
| | - Stefan Strilciuc
- Department of Neurology, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca; Romania
| | - Peter Trillenberg
- Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
11
|
Innovative mouse model mimicking human-like features of spinal cord injury: efficacy of Docosahexaenoic acid on acute and chronic phases. Sci Rep 2019; 9:8883. [PMID: 31222077 PMCID: PMC6586623 DOI: 10.1038/s41598-019-45037-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury has dramatic consequences and a huge social impact. We propose a new mouse model of spinal trauma that induces a complete paralysis of hindlimbs, still observable 30 days after injury. The contusion, performed without laminectomy and deriving from the pressure exerted directly on the bone, mimics more closely many features of spinal injury in humans. Spinal cord was injured at thoracic level 10 (T10) in adult anesthetized female CD1 mice, mounted on stereotaxic apparatus and connected to a precision impactor device. Following severe injury, we evaluated motor and sensory functions, and histological/morphological features of spinal tissue at different time points. Moreover, we studied the effects of early and subchronic administration of Docosahexaenoic acid, investigating functional responses, structural changes proximal and distal to the lesion in primary and secondary injury phases, proteome modulation in injured spinal cord. Docosahexaenoic acid was able i) to restore behavioural responses and ii) to induce pro-regenerative effects and neuroprotective action against demyelination, apoptosis and neuroinflammation. Considering the urgent health challenge represented by spinal injury, this new and reliable mouse model together with the positive effects of docosahexaenoic acid provide important translational implications for promising therapeutic approaches for spinal cord injuries.
Collapse
|
12
|
Svobodova B, Kloudova A, Ruzicka J, Kajtmanova L, Navratil L, Sedlacek R, Suchy T, Jhanwar-Uniyal M, Jendelova P, Machova Urdzikova L. The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Sci Rep 2019; 9:7660. [PMID: 31113985 PMCID: PMC6529518 DOI: 10.1038/s41598-019-44141-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/08/2019] [Indexed: 01/01/2023] Open
Abstract
We investigated the effect of a Multiwave Locked System laser (with a simultaneous 808 nm continuous emission and 905 nm pulse emission) on the spinal cord after spinal cord injury (SCI) in rats. The functional recovery was measured by locomotor tests (BBB, Beam walking, MotoRater) and a sensitivity test (Plantar test). The locomotor tests showed a significant improvement of the locomotor functions of the rats after laser treatment from the first week following lesioning, compared to the controls. The laser treatment significantly diminished thermal hyperalgesia after SCI as measured by the Plantar test. The atrophy of the soleus muscle was reduced in the laser treated rats. The histopathological investigation showed a positive effect of the laser therapy on white and gray matter sparing. Our data suggests an upregulation of M2 macrophages in laser treated animals by the increasing number of double labeled CD68+/CD206+ cells in the cranial and central parts of the lesion, compared to the control animals. A shift in microglial/macrophage polarization was confirmed by gene expression analysis by significant mRNA downregulation of Cd86 (marker of inflammatory M1), and non-significant upregulation of Arg1 (marker of M2). These results demonstrated that the combination of 808 nm and 905 nm wavelength light is a promising non-invasive therapy for improving functional recovery and tissue sparing after SCI.
Collapse
Affiliation(s)
- Barbora Svobodova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic.,2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Kloudova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic
| | - Jiri Ruzicka
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic
| | | | - Leos Navratil
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University, Kladno, Czech Republic
| | - Radek Sedlacek
- Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tomas Suchy
- Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. .,2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. .,2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
13
|
Cheng X, Long H, Chen W, Xu J, Wang X, Li F. The correlation between hypoxia-inducible factor-1α, matrix metalloproteinase-9 and functional recovery following chronic spinal cord compression. Brain Res 2019; 1718:75-82. [PMID: 31054885 DOI: 10.1016/j.brainres.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms underlying cervical spondylotic myelopathy (CSM) are poorly understood. To assess the correlation between HIF-1α, MMP-9 and functional recovery following chronic cervical spinal cord compression (CSCI). Rats in the sham group underwent C5 semi-laminectomy, while a water-absorbable polyurethane polymer was implanted into the C6 epidural space in the chronic CSCI group. Basso, Beattie and Bresnahan score and somatosensory evoked potentials were used to evaluate neurological function. Hematoxylin and eosin staining was performed to assess pathological changes in the spinal cord, while immunohistochemical analysis was used to examine HIF-1α and MMP-9 expression on days 7, 28, 42 and 70 post-surgery. Normal rats were only used for HE staining. The BBB score was significantly reduced on day 28 following CSCI, while SEPs exhibited decreased amplitude and increased latency. In chronic CSCI group, the BBB score and SEPs significantly improved on day 70 compared with day 28. HE staining revealed different level of spinal cord edema after chronic CSCI. Compared with the sham group, immunohistochemical analyses revealed that HIF-1α- and MMP-9-positive cells were increased on day 7 and peaked on day 28. HIF-1α and MMP-9 expression were demonstrated to be significantly positively correlated, whereas HIF-1α expression and BBB score were significantly negatively correlated, as well MMP-9 expression and BBB score. HIF-1α and MMP-9 expression are increased following chronic spinal cord compression and are positively correlated with one another. Decreased expression of HIF-1α and MMP-9 may contribute to functional recovery following CSCI. This expression pattern of HIF-1α and MMP-9 may give a new perspective on the molecular mechanisms of CSM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Wenli Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaobo Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Fobao Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
14
|
Estrada V, Krebbers J, Voss C, Brazda N, Blazyca H, Illgen J, Seide K, Jürgens C, Müller J, Martini R, Trieu HK, Müller HW. Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury. Commun Biol 2018; 1:205. [PMID: 30511019 PMCID: PMC6255786 DOI: 10.1038/s42003-018-0210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumps supports formation of a tissue bridge, glial and vascular cell invasion, motor axon regeneration and myelination, resulting in partial recovery of motor-evoked potentials and a thus far unmet improvement of locomotor behaviour. The recovery lasts for at least 5 months. Despite a late partial decline, motor recovery remains significantly superior to controls. Our findings demonstrate that microsystem technology can foster long-lasting functional improvement after complete spinal injury, providing a new and effective tool for combinatorial therapies.
Collapse
Affiliation(s)
- Veronica Estrada
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Julia Krebbers
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Voss
- 2Institute of Microsystems Technology, Hamburg University of Technology, Eißendorfer Str. 42, 21073 Hamburg, Germany.,BG Trauma Centre Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany
| | - Nicole Brazda
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heinrich Blazyca
- 4Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Jennifer Illgen
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Klaus Seide
- BG Trauma Centre Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany
| | - Christian Jürgens
- BG Trauma Centre Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany
| | - Jörg Müller
- 2Institute of Microsystems Technology, Hamburg University of Technology, Eißendorfer Str. 42, 21073 Hamburg, Germany
| | - Rudolf Martini
- 4Developmental Neurobiology, Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Hoc Khiem Trieu
- 2Institute of Microsystems Technology, Hamburg University of Technology, Eißendorfer Str. 42, 21073 Hamburg, Germany
| | - Hans Werner Müller
- 1Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.,CNR (Center for Neuronal Regeneration), Merowinger Platz 1a, 40225 Düsseldorf, Germany.,6Biomedical Research Center, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Scholpa NE, Williams H, Wang W, Corum D, Narang A, Tomlinson S, Sullivan PG, Rabchevsky AG, Schnellmann RG. Pharmacological Stimulation of Mitochondrial Biogenesis Using the Food and Drug Administration-Approved β 2-Adrenoreceptor Agonist Formoterol for the Treatment of Spinal Cord Injury. J Neurotrauma 2018; 36:962-972. [PMID: 30280980 DOI: 10.1089/neu.2018.5669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A hallmark of the progressive cascade of damage referred to as secondary spinal cord injury (SCI) is vascular disruption resulting in decreased oxygen delivery and loss of mitochondria homeostasis. While therapeutics targeting restoration of single facets of mitochondrial function have proven largely ineffective clinically post-SCI, comprehensively addressing mitochondrial function via pharmacological stimulation of mitochondrial biogenesis (MB) is an underexplored strategy. This study examined the effects of formoterol, a mitochondrial biogenic Food and Drug Administration-approved selective and potent β2-adrenoreceptor (ADRB2) agonist, on recovery from SCI in mice. Female C57BL/6 mice underwent moderate SCI using a force-controlled impactor-induced contusion model, followed by daily formoterol intraperitoneal administration (0.1 mg/kg) beginning 1 h post-SCI. The SCI resulted in decreased mitochondrial protein expression, including PGC-1α, in the injury and peri-injury sites as early as 3 days post-injury. Formoterol treatment attenuated this decrease in PGC-1α, indicating enhanced MB, and restored downstream mitochondrial protein expression to that of controls by 15 days. Formoterol-treated mice also exhibited less histological damage than vehicle-treated mice 3 days after injury-namely, decreased lesion volume and increased white and gray matter sparing in regions rostral and caudal to the injury epicenter. Importantly, locomotor capability of formoterol-treated mice was greater than vehicle-treated mice by 7 days, reaching a Basso Mouse Scale score two points greater than that of vehicle-treated SCI mice by 15 days. Interestingly, similar locomotor restoration was observed when initiation of treatment was delayed until 8 h post-injury. These data provide evidence of ADRB2-mediated MB as a therapeutic approach for the management of SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- 1 Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,2 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Hannah Williams
- 3 Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Wenxue Wang
- 4 Neuroscience Institute, Medical University of South Carolina, Charleston, South Carolina.,5 Ralph H. Johnsons Veteran Affairs Medical Center, Charleston, South Carolina
| | - Daniel Corum
- 2 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aarti Narang
- 4 Neuroscience Institute, Medical University of South Carolina, Charleston, South Carolina.,5 Ralph H. Johnsons Veteran Affairs Medical Center, Charleston, South Carolina
| | - Stephen Tomlinson
- 4 Neuroscience Institute, Medical University of South Carolina, Charleston, South Carolina.,5 Ralph H. Johnsons Veteran Affairs Medical Center, Charleston, South Carolina.,6 Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Patrick G Sullivan
- 7 Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Alexander G Rabchevsky
- 3 Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Rick G Schnellmann
- 1 Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,8 Southern Arizona VA Health Care System, Tucson, Arizona.,9 Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona.,10 Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Silva C, Oliveira K, Lavor M, Silva J, Rosado I, Taguchi T, Fukushima F, Caldeira F, Torres B, Milani P, Azevedo S, Motta G, Siano G, Goes A, Serakides R, Melo E. Benefícios da condroitinase abc associada a células-tronco mesenquimais na lesão espinhal aguda em ratos. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RESUMO Com o objetivo de estudar o efeito da condroitinase associada às células-tronco mesenquimais na lesão aguda da medula espinhal, utilizaram-se 50 ratos Lewis, distribuídos igualmente nos grupos: controle negativo (CN), tratamento com placebo (PLA), condroitinase (CDN), células-tronco mesenquimais (CTM) e condroitinase mais células-tronco mesenquimais (CDN+CTM). Todos os animais tiveram a medula espinhal exposta por laminectomia, e os grupos PLA, CDT, CTM e CDT+CTM sofreram também trauma medular compressivo. Após sete dias, procedeu-se à reexposição da medula espinhal, quando os grupos PLA e CTM receberam 4µL de líquido cefalorraquidiano artificial via intralesional, e os grupos CDT e CDT+CTM receberam o mesmo líquido contendo 2,2U de condroitinase. Após 14 dias da cirurgia inicial, todos os animais receberam 0,2mL de PBS via endovenosa, contudo, nos grupos CTM e CDT+CTM, esse líquido continha 1x106 CTM. Avaliou-se a capacidade motora até o 28o dia pós-trauma e, posteriormente, as medulas espinhais foram analisadas por RT-PCR, para quantificação da expressão gênica para BDNF, NT-3, VEGF, KDR e PECAM-1, e por imunoistoquímica, para detecção das células-tronco GFP injetadas (anti-GFP), quantificação dos neurônios (anti-NeuN) e da GFAP e vimentina, para avaliação da cicatriz glial. As análises estatísticas foram realizadas com o auxílio do Prism 5 for Windows, com o nível de significância de 5%. Não houve diferença entre os grupos quanto à capacidade motora. O grupo CDT+CTM apresentou maior imunoexpressão de neurônios viáveis do que o placebo. No CTM, houve maior expressão dos fatores neurotróficos BDNF e VEGF. E no CDT, houve menor imunoexpressão de vimentina. Concluiu-se que a associação CDT+CTM favorece a viabilidade neuronal após o trauma, que o tratamento com CTM promove aumento na expressão dos fatores tróficos BDNF e VEGF e que o tratamento com condroitinase é efetivo na redução da cicatriz glial.
Collapse
Affiliation(s)
| | | | | | - J.F. Silva
- Universidade Estadual de Santa Cruz, Brazil
| | | | | | | | | | | | - P.F. Milani
- Universidade Federal de Minas Gerais, Brazil
| | | | - G.R. Motta
- Universidade Federal de Minas Gerais, Brazil
| | - G.F. Siano
- Universidade Federal de Minas Gerais, Brazil
| | - A.M. Goes
- Universidade Federal de Minas Gerais, Brazil
| | | | - E.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
17
|
Rocha LA, Sousa RA, Learmonth DA, Salgado AJ. The Role of Biomaterials as Angiogenic Modulators of Spinal Cord Injury: Mimetics of the Spinal Cord, Cell and Angiogenic Factor Delivery Agents. Front Pharmacol 2018; 9:164. [PMID: 29535633 PMCID: PMC5835322 DOI: 10.3389/fphar.2018.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) represents an extremely debilitating condition for which no efficacious treatment is available. One of the main contributors to the inhospitable environment found in SCI is the vascular disruption that happens at the moment of injury that compromises the blood-spinal cord barrier (BSCB) and triggers a cascade of events that includes infiltration of inflammatory cells, ischemia and intraparenchymal hemorrhage. Due to the unsatisfactory nature of revascularization following SCI, restoring vascular perfusion and the BSCB seems an interesting way of modulating the lesion environment into a regenerative phenotype, with a potential increase in functional recovery. Certain biomaterials possess interesting features to enhance SCI therapies, and in fact have been applied as angiogenic promoters in other pathologies. The present mini-review intends to highlight the contribution that biomaterials could make in the development of novel therapeutic solutions able to restore proper vascularization and the BSCB.
Collapse
Affiliation(s)
- Luís A. Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Barco, Portugal
| | - Rui A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Barco, Portugal
| | | | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
18
|
Ham TR, Leipzig ND. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed Mater 2018; 13:024105. [PMID: 29155409 PMCID: PMC5824690 DOI: 10.1088/1748-605x/aa9bbb] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nature of traumatic spinal cord injury (SCI) often involves limited recovery and long-term quality of life complications. The initial injury sets off a variety of secondary cascades, which result in an expanded lesion area. Ultimately, the native tissue fails to regenerate. As treatments are developed in the laboratory, the management of this secondary cascade is an important first step in achieving recovery of normal function. Current literature identifies four broad targets for intervention: inflammation, oxidative stress, disruption of the blood-spinal cord barrier, and formation of an inhibitory glial scar. Because of the complex and interconnected nature of these events, strategies that combine multiple therapies together show much promise. Specifically, approaches that rely on biomaterials to perform a variety of functions are generating intense research interest. In this review, we examine each target and discuss how biomaterials are currently used to address them. Overall, we show that there are an impressive amount of biomaterials and combinatorial treatments which show good promise for slowing secondary events and improving outcomes. If more emphasis is placed on growing our understanding of how materials can manage secondary events, treatments for SCI can be designed in an increasingly rational manner, ultimately improving their potential for translation to the clinic.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Biomedical Engineering, Auburn Science and Engineering Center 275, West Tower, University of Akron, Akron, OH 44325-3908, United States of America
| | | |
Collapse
|
19
|
Scholpa NE, Schnellmann RG. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J Pharmacol Exp Ther 2017; 363:303-313. [PMID: 28935700 PMCID: PMC5676296 DOI: 10.1124/jpet.117.244806] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
20
|
Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 2017; 23:733-741. [PMID: 28459438 PMCID: PMC5716958 DOI: 10.1038/nm.4331] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Blood vessels in the central nervous system (CNS) are controlled by neuronal activity. For example, widespread vessel constriction (vessel tone) is induced by brainstem neurons that release the monoamines serotonin and noradrenaline, and local vessel dilation is induced by glutamatergic neuron activity. Here we examined how vessel tone adapts to the loss of neuron-derived monoamines after spinal cord injury (SCI) in rats. We find that, months after the imposition of SCI, the spinal cord below the site of injury is in a chronic state of hypoxia owing to paradoxical excess activity of monoamine receptors (5-HT1) on pericytes, despite the absence of monoamines. This monoamine-receptor activity causes pericytes to locally constrict capillaries, which reduces blood flow to ischemic levels. Receptor activation in the absence of monoamines results from the production of trace amines (such as tryptamine) by pericytes that ectopically express the enzyme aromatic L-amino acid decarboxylase (AADC), which synthesizes trace amines directly from dietary amino acids (such as tryptophan). Inhibition of monoamine receptors or of AADC, or even an increase in inhaled oxygen, produces substantial relief from hypoxia and improves motoneuron and locomotor function after SCI.
Collapse
|
21
|
Supanc HRH, Gorman S, Tuan RS. Traumatized muscle-derived multipotent progenitor cells recruit endothelial cells through vascular endothelial growth factor-A action. J Tissue Eng Regen Med 2017; 11:3038-3047. [PMID: 28078807 DOI: 10.1002/term.2205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/24/2016] [Accepted: 03/27/2016] [Indexed: 12/21/2022]
Abstract
Traumatized muscle, such as that debrided from blast injury sites, is considered a promising and convenient tissue source for multipotent progenitor cells (MPCs), a population of adult mesenchymal stem cell (MSC)-like cells. The present study aimed to assess the regenerative therapeutic potential of human traumatized muscle-derived MPCs, e.g., for injury repair in the blast-traumatized extremity, by comparing their pro-angiogenic potential in vitro and capillary recruitment activity in vivo to those of MSCs isolated from human bone marrow, a widely-used tissue source. MPCs were tested for their direct and indirect effects on human microvascular endothelial cells (ECs) in vitro. The findings reported here showed that MPC-conditioned culture medium (MPC-CM), like MSC-CM, promoted EC-cord network branching. Silent (si)RNA-mediated silencing of vascular endothelial growth factor-A (VEGF-A) expression in MPCs attenuated this effect. In a chick embryonic chorioallantoic membrane in vivo angiogenesis assay, MPCs encapsulated in photocrosslinked gelatin scaffold recruited blood vessels more efficiently than either MSCs or human foreskin fibroblasts. Together, these findings support the potential application of traumatized muscle-derived MPCs in cell-based regenerative medicine therapies as a result of their influence on EC organization. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heidi R H Supanc
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Shannon Gorman
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
22
|
Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats. Sci Rep 2016; 6:33428. [PMID: 27641997 PMCID: PMC5027575 DOI: 10.1038/srep33428] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022] Open
Abstract
This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2–8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P < 0.01), significantly more NF-positive and serotonergic fibers, and more MBP-positive mature oligodendrocytes. Animals receiving angiogenic microspheres also suffered significantly less loss of white matter volume. At 10 weeks after injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P < 0.01). Our results suggest that biodegradable, biocompatible PLGA microspheres can release angiogenic factors in a sustained fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function.
Collapse
|
23
|
Abstract
Self-healing is a natural process common to all living organisms which provides increased longevity and the ability to adapt to changes in the environment. Inspired by this fitness-enhancing functionality, which was tuned by billions of years of evolution, scientists and engineers have been incorporating self-healing capabilities into synthetic materials. By mimicking mechanically triggered chemistry as well as the storage and delivery of liquid reagents, new materials have been developed with extended longevity that are capable of restoring mechanical integrity and additional functions after being damaged. This Review describes the fundamental steps in this new field of science, which combines chemistry, physics, materials science, and mechanical engineering.
Collapse
Affiliation(s)
- Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000 (Israel)
| | - Nancy R Sottos
- Department of Materials Science and Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave. Urbana, IL 61801 (USA)
| | - Jeffrey S Moore
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave. Urbana, IL 61801 (USA)
| | - Scott R White
- Department of Aerospace Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave. Urbana, IL 61801 (USA).
| |
Collapse
|
24
|
|
25
|
Decreased anti-regenerative effects after spinal cord injury in spry4-/- mice. Neuroscience 2014; 287:104-12. [PMID: 25541251 DOI: 10.1016/j.neuroscience.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated a role for fibroblast growth factor (Fgf) in spinal cord regeneration in both zebrafish and mouse. We have shown that exogenous Fgf2 treatment attenuates astrocytic gliosis and induces glia cells to become progenitors that undergo neurogenesis as well as differentiating into bipolar astrocytes that support axonal regeneration (Goldshmit et al., 2012, 2014). One of the downstream signaling target genes of Fgf is spry4, which acts as a feedback inhibitor for Fgf signaling. In this study we examined the effects of increased endogenous Fgf signaling, in spry4-/- mice, on the early events that occur after spinal cord injury (SCI). We demonstrate that in spry4-/- mice inflammatory responses, such as tumor necrosis factor α (TNFα) secretion and macrophage/neutrophil invasion into the lesion site are reduced. In addition, astrocytic gliosis is attenuated and neuronal survival is increased. These results further support a pro-regenerative role of Fgf after SCI, and suggest that increased endogenous Fgf signaling after SCI may contribute to functional recovery and therefore presents this pathway as a target for new therapy development.
Collapse
|
26
|
Esmaeili M, Berry M, Logan A, Ahmed Z. Decorin treatment of spinal cord injury. Neural Regen Res 2014; 9:1653-6. [PMID: 25374584 PMCID: PMC4211183 DOI: 10.4103/1673-5374.141797] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
The scarring response after a penetrant central nervous system injury results from the interaction between invading leptominingeal/pericyte-derived fibroblasts and endogenous reactive astrocytes about the wound margin. Extracellular matrix and scar-derived axon growth inhibitory molecules fill the lesion site providing both a physical and chemical barrier to regenerating axons. Decorin, a small leucine-rich chondroitin-dermatan sulphate proteoglycan expressed by neurons and astrocytes in the central nervous system, is both anti-fibrotic and anti-inflammatory and attenuates the formation and partial dissolution of established and chronic scars. Here, we discuss the potential of using Decorin to antagonise scarring in the central nervous system.
Collapse
Affiliation(s)
- Maryam Esmaeili
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
27
|
Mecollari V, Nieuwenhuis B, Verhaagen J. A perspective on the role of class III semaphorin signaling in central nervous system trauma. Front Cell Neurosci 2014; 8:328. [PMID: 25386118 PMCID: PMC4209881 DOI: 10.3389/fncel.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) has severe impact on the patients’ quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the surrounding vascular architecture and initiation of an immune response. Class III semaphorins (SEMA3s) are present in the neural scar and influence a wide range of molecules and cell types in and surrounding the injured tissue. SEMA3s and their receptors, neuropilins (NRPs) and plexins (PLXNs) were initially studied because of their involvement in repulsive axon guidance. To date, SEMA3 signaling is recognized to be of crucial importance for re-vascularization, the immune response and remyelination. The purpose of this review is to summarize and discuss how SEMA3s modulate these processes that are all crucial components of the tissue response to injury. Most of the functions for SEMA3s are achieved through their binding partners NRPs, which are also co-receptors for a variety of other molecules implicated in the above processes. The most notable ligands are members of the vascular endothelial growth factor (VEGF) family and the transforming growth factor family. Therefore, a second aim is to highlight the overlapping or competing signaling pathways that are mediated through NRPs in the same processes. In conclusion, we show that the role of SEMA3s goes beyond inhibiting axonal regeneration, since they are also critical modulators of re-vascularization, the immune response and re-myelination.
Collapse
Affiliation(s)
- Vasil Mecollari
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Bart Nieuwenhuis
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
28
|
Kavoi BM, Plendl J, Makanya AN, Ochieng' S, Kiama SG. Effects of anticancer drug docetaxel on the structure and function of the rabbit olfactory mucosa. Tissue Cell 2014; 46:213-24. [PMID: 24846480 DOI: 10.1016/j.tice.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
Docetaxel (DCT) is an anticancer drug which acts by disrupting microtubule dynamics in the highly mitotic cancer cells. Thus, this drug has a potential to affect function and organization of tissues exhibiting high cellular turnover. We investigated, in the rabbit, the effects of a single human equivalent dose (6.26 mg/kg, i.v.) of DCT on the olfactory mucosa (OM) through light and electron microscopy, morphometry, Ki-67 immunostaining, TUNEL assay and the buried food test for olfactory sensitivity. On post-exposure days (PED) 5 and 10, there was disarrangement of the normal cell layering in the olfactory epithelium (OE), apoptotic death of cells of the OE, Bowman's glands and axon bundles, and the presence (including on PED 3) of blood vessels in the bundle cores. A decrease in bundle diameters, olfactory cell densities and cilia numbers, which was most significant on PED 10 (49.3%, 63.4% and 50%, respectively), was also evident. Surprisingly by PED 15, the OM regained normal morphology. Furthermore, olfactory sensitivity decreased progressively until PED 10 when olfaction was markedly impaired, and with recovery from the impairment by PED 15. These observations show that DCT transiently alters the structure and function of the OM suggesting a high regenerative potential for this tissue.
Collapse
Affiliation(s)
- Boniface M Kavoi
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, University of Nairobi, Riverside Drive, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Free University of Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Andrew N Makanya
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, University of Nairobi, Riverside Drive, P.O. Box 30197-00100, Nairobi, Kenya; Institute of Anatomy, University of Bern, Balzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Shem Ochieng'
- International Centre for Insect Physiology and Ecology, P.O. Box 30772, Kasarani, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, University of Nairobi, Riverside Drive, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|