1
|
Zhu B, Zhu J, Liu A, Yao B, Liao F, Yang S. Transcriptomic and metabolomic analysis based on different aggressive pecking phenotype in duck. Sci Rep 2024; 14:22321. [PMID: 39333746 PMCID: PMC11436778 DOI: 10.1038/s41598-024-73726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Aggressive pecking is an important welfare and production efficiency issue in poultry farming. The precise mechanisms underlying the occurrence of aggressive pecking remain poorly understood. In this study, we selected Sansui ducks that performed aggressive pecking and ducks that did not perform aggressive pecking from video recordings. Transcriptomic and metabolomic analyses of the whole brains of aggressive pecking ducks and normal ducks revealed 504 differentially expressed genes and 5 differentially altered metabolites (adenosine, guanidinopropionic acid, Met-Leu, Glu-Ile and 5,6,8-trihydroxy-2-methylbenzo[g]chromen-4-one). By jointly analysing the transcriptomics and metabolomics results, we discovered 8 candidate genes (ADCYAP1, GAL, EDN2, EDN1, MC5R, S1PR4, LOC113843450, and IAPP) and one candidate metabolite (adenosine) that regulates aggressive pecking behaviour in ducks. The candidate genes and metabolites may be involved in regulating aggressive pecking behaviour by inducing neurodegeneration and disrupting neural excitatory-inhibitory homeostasis, which in turn affects central nervous system function in aggressive pecking and normal ducks. Our findings provide a new reference for revealing the underlying mechanism of aggressive pecking behaviour in ducks.
Collapse
Affiliation(s)
- Baoguo Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jinjin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bingnong Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fuyou Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shenglin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Bachtell RK, Larson TA, Winkler MC. Adenosine receptor stimulation inhibits methamphetamine-associated cue seeking. J Psychopharmacol 2023; 37:192-203. [PMID: 36629009 DOI: 10.1177/02698811221147157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Methamphetamine (METH) is a psychostimulant drug that remains a popular and threatening drug of abuse with high abuse liability. There is no established pharmacotherapy to treat METH dependence, but evidence suggests that stimulation of adenosine receptors reduces the reinforcing properties of METH and could be a potential pharmacological target. This study examines the effects of adenosine receptor subtype stimulation on METH seeking using both a cue-induced reinstatement and cue-craving model of relapse. METHODS Male and female rats were trained to self-administer METH during daily 2-h sessions. Cue-induced reinstatement of METH seeking was evaluated after extinction training. A systemic pretreatment of an adenosine A1 receptor (A1R) or A2A receptor (A2AR) agonist was administered prior to an extinction or cue session to evaluate the effects of adenosine receptor subtype stimulation on METH seeking. The effects of a systemic pretreatment of A1R or A2AR agonists were also evaluated in a cue-craving model where the cued-seeking test was conducted after 21 days of forced home-cage abstinence without extinction training. RESULTS Cue-induced reinstatement was reduced in both male and female rats that received A1R or A2AR agonist pretreatments. Similarly, an A1R or A2AR agonist pretreatment also inhibited cue craving in both male and female rats. CONCLUSION Stimulation of either adenosine A1R or A2AR subtypes inhibits METH-seeking behavior elicited by METH-associated cues. These effects may be attributed to the ability of A1R and A2AR stimulation to disrupt cue-induced dopamine and glutamate signaling throughout the brain.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tracey A Larson
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Madeline C Winkler
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
4
|
Decker H, Piermartiri TCB, Nedel CB, Romão LF, Francisco SS, Dal-Cim T, Boeck CR, Moura-Neto V, Tasca CI. Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A 2A and ionotropic glutamate receptors. Purinergic Signal 2019; 15:439-450. [PMID: 31478180 DOI: 10.1007/s11302-019-09677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We previously showed that GBPs, such as guanosine-5'-monophosphate (GMP) or guanosine (GUO), promote the reorganization of extracellular matrix proteins in astrocytes, and increase the number of neurons in a neuron-astrocyte co-culture protocol. To delineate the molecular basis underlying these effects, we isolated cerebellar neurons in culture and treated them with a conditioned medium derived from astrocytes previously exposed to GUO or GMP (GBPs-ACM) or, directly, with GUO or GMP. Agreeing with the previous studies, there was an increase in the number of β-tubulin III-positive neurons in both conditions, compared with controls. Interestingly, the increase in the number of neurons in the neuronal cultures treated directly with GUO or GMP was more prominent, suggesting a direct interaction of GBPs on cerebellar neurons. To investigate this issue, we assessed the role of adenosine and glutamate receptors and related intracellular signaling pathways after GUO or GMP treatment. We found an involvement of A2A adenosine receptors, ionotropic glutamate N-methyl-D-aspartate (NMDA), and non-NMDA receptors in the increased number of cerebellar neurons. The signaling pathways extracellular-regulated kinase (ERK), calcium-calmodulin-dependent kinase-II (CaMKII), protein kinase C (PKC), phosphatidilinositol-3'-kinase (PI3-K), and protein kinase A (PKA) are also potentially involved with GMP and GUO effect. Such results suggest that GMP and GUO, and molecules released in GBPs-ACM promote the survival or maturation of primary cerebellar neurons or both via interaction with adenosine and glutamate receptors.
Collapse
Affiliation(s)
- Helena Decker
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brasil
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Tetsade C B Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brasil
| | - Cláudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brasil
| | - Luciana F Romão
- Departamento de Anatomia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brasil
| | - Sheila S Francisco
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brasil
| | - Tharine Dal-Cim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brasil
| | - Carina R Boeck
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brasil
| | - Vivaldo Moura-Neto
- Departamento de Anatomia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brasil
- Instituto Estadual do Cérebro Paulo Niemeyer da Secretaria de Estado de Saúde do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brasil.
| |
Collapse
|
5
|
Dong ZSW, Cao ZP, Shang YJ, Liu QY, Wu BY, Liu WX, Li CH. Neuroprotection of cordycepin in NMDA-induced excitotoxicity by modulating adenosine A 1 receptors. Eur J Pharmacol 2019; 853:325-335. [PMID: 30978320 DOI: 10.1016/j.ejphar.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Cerebral ischemia impairs physiological form of synaptic plasticity such as long-term potentiation (LTP). Clinical symptoms of cognitive dysfunction resulting from cerebral ischemia are associated with neuron loss and synaptic function impairment in hippocampus. It has been widely reported that cordycepin displays neuroprotective effect on ameliorating cognitive dysfunction induced by cerebral ischemia. Therefore, it is necessary to study whether cordycepin recovers cognitive function after brain ischemia through improving LTP induction. However, there has been very little discussion about the effects of cordycepin on LTP of cerebral ischemia so far. In the present study, we investigated the effects of cordycepin on LTP impairment and neuron loss induced by cerebral ischemia and excitotoxicity, using electrophysiological recording and Nissl staining techniques. The models were obtained by bilateral common carotid artery occlusion (BCCAO) and intrahippocampal NMDA microinjection. We also explored whether adenosine A1 receptors involve in the neuroprotection of cordycepin by using western blot. We found that cordycepin remarkably alleviated LTP impairment and protected pyramidal cell of hippocampal CA1 region against cerebral ischemia and excitotoxicity. Meanwhile, cordycepin prevented the reduction on adenosine A1 receptor level caused by ischemia but did not alter the adenosine A2A receptor level in hippocampal CA1 area. The improvement of LTP in the excitotoxic rats after cordycepin treatment could be blocked by DPCPX, a selective antagonist of adenosine A1 receptor. In summary, our findings provided new insights into the mechanisms of cordycepin neuroprotection in excitotoxic diseases, which is through regulating adenosine A1 receptor to improve LTP formation and neuronal survival.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | | | | |
Collapse
|
6
|
Larson TA, Winkler MC, Stafford J, Levis SC, O’Neill CE, Bachtell RK. Role of dopamine D 2-like receptors and their modulation by adenosine receptor stimulation in the reinstatement of methamphetamine seeking. Psychopharmacology (Berl) 2019; 236:1207-1218. [PMID: 30470862 PMCID: PMC6533169 DOI: 10.1007/s00213-018-5126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVE Previous work has demonstrated that dopamine and adenosine receptors are involved in drug-seeking behaviors, yet the pharmacological interactions between these receptors in methamphetamine (MA) seeking are not well characterized. The present studies examined the role of the dopamine D2-like receptors in MA seeking and identified the interactive effects of adenosine receptor stimulation. METHODS Adult male Sprague-Dawley rats were trained to lever press for MA in daily 2-h self-administration sessions on a fixed-ratio 1 schedule for 10 consecutive days. After 1 day of abstinence, lever pressing was extinguished in six daily extinction sessions. Treatments were administered systemically prior to a 2-h reinstatement test session. RESULTS An increase in MA seeking was observed following the administration of the dopamine D2-like agonist, quinpirole, or the D3 receptor agonist, 7-OH-DPAT. Stimulation of D2 or D4 receptors was ineffective at inducing MA seeking. Quinpirole-induced MA seeking was inhibited by D3 receptor antagonism (SB-77011A or PG01037), an adenosine A1 agonist, CPA, and an adenosine A2A agonist, CGS 21680. MA seeking induced by a MA priming injection or D3 receptor stimulation was inhibited by a pretreatment with the adenosine A1 agonist, CPA, but not the adenosine A2A agonist, CGS 21680. CONCLUSIONS These results demonstrate the sufficiency of dopamine D3 receptors to reinstate MA seeking that is inhibited when combined with adenosine A1 receptor stimulation.
Collapse
|
7
|
Haynes NS, O’Neill CE, Hobson BD, Bachtell RK. Effects of adenosine A 2A receptor antagonists on cocaine-induced locomotion and cocaine seeking. Psychopharmacology (Berl) 2019; 236:699-708. [PMID: 30392131 PMCID: PMC6401288 DOI: 10.1007/s00213-018-5097-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES Adenosine signaling through adenosine A2A receptors (A2ARs) is known to influence cocaine-induced behaviors. These studies sought to elucidate how two A2AR antagonists distinguished by their antagonist effects at presynaptic and postsynaptic A2AR influence cocaine-induced locomotion and cocaine seeking. METHODS Sprague-Dawley rats were used to assess the differential effects of SCH 442416 and istradefylline that antagonize presynaptic and postsynaptic A2AR, respectively. We evaluated the effects of these antagonists on both basal and cocaine-induced locomotion in cocaine-naïve rats and rats that received seven daily cocaine treatments. The effects of SCH 442416 or istradefylline on cocaine seeking were measured in animals extinguished from cocaine self-administration. We assessed the effects of the A2AR antagonists to induce cocaine seeking when administered alone and their effects on cocaine seeking induced by a cocaine-priming injection. Lastly, we evaluated the effects of the antagonists on sucrose seeking in animals extinguished from sucrose self-administration. RESULTS Neither istradefylline nor SCH 442416 significantly altered basal locomotion. Istradefylline enhanced acute cocaine-induced locomotion but had no effect on the expression of locomotor sensitization. SCH 44216 had no effect on acute cocaine-induced locomotion but inhibited the expression of locomotor sensitization. Istradefylline was sufficient to induce cocaine seeking and augmented both cocaine-induced seeking and sucrose seeking. SCH 442416 inhibited cocaine-induced seeking, but had no effect on sucrose seeking and did not induce cocaine seeking when administered alone. CONCLUSIONS These findings demonstrate differential effects of two A2AR antagonists distinguished by their effects at pre- and postsynaptic A2AR on cocaine-induced behaviors.
Collapse
|
8
|
Morales-Figueroa GE, Rivera-Ramírez N, González-Pantoja R, Escamilla-Sánchez J, García-Hernández U, Galván EJ, Arias-Montaño JA. Adenosine A 2A and histamine H 3 receptors interact at the cAMP/PKA pathway to modulate depolarization-evoked [ 3H]-GABA release from rat striato-pallidal terminals. Purinergic Signal 2018; 15:85-93. [PMID: 30565027 DOI: 10.1007/s11302-018-9638-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
We previously reported that the activation of histamine H3 receptors (H3Rs) selectively counteracts the facilitatory action of adenosine A2A receptors (A2ARs) on GABA release from rat globus pallidus (GP) isolated nerve terminals (synaptosomes). In this work, we examined the mechanisms likely to underlie this functional interaction. Three possibilities were explored: (a) changes in receptor affinity for agonists induced by physical A2AR/H3R interaction, (b) opposite actions of A2ARs and H3Rs on depolarization-induced Ca2+ entry, and (c) an A2AR/H3R interaction at the level of adenosine 3',5'-cyclic monophosphate (cAMP) formation. In GP synaptosomal membranes, H3R activation with immepip reduced A2AR affinity for the agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS-21680) (Ki control 4.53 nM; + immepip 9.32 nM), whereas A2AR activation increased H3R affinity for immepip (Ki control 0.63 nM; + CGS-21680 0.26 nM). Neither A2AR activation nor H3R stimulation modified calcium entry through voltage-gated calcium channels in GP synaptosomes, as evaluated by microfluorometry. A2AR-mediated facilitation of depolarization-evoked [2,3-3H]-γ-aminobutyric acid ([3H]-GABA) release from GP synaptosomes (130.4 ± 3.6% of control values) was prevented by the PKA inhibitor H-89 and mimicked by the adenylyl cyclase activator forskolin or by 8-Bromo-cAMP, a membrane permeant cAMP analogue (169.5 ± 17.3 and 149.5 ± 14.5% of controls). H3R activation failed to reduce the facilitation of [3H]-GABA release induced by 8-Bromo-cAMP. In GP slices, A2AR activation stimulated cAMP accumulation (290% of basal) and this effect was reduced (- 75%) by H3R activation. These results indicate that in striato-pallidal nerve terminals, A2ARs and H3Rs interact at the level of cAMP formation to modulate PKA activity and thus GABA release.
Collapse
Affiliation(s)
- Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Ciudad de México, México
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Ciudad de México, México
| | - Raúl González-Pantoja
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Ciudad de México, México
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Ciudad de México, México
| | - Ubaldo García-Hernández
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Ciudad de México, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, 07360, MÉXICO, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Ciudad de México, México.
| |
Collapse
|
9
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|