1
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
2
|
de Fátima Dos Santos Sampaio M, Santana Bastos Boechat M, Augusto Gusman Cunha I, Gonzaga Pereira M, Coimbra NC, Giraldi-Guimarães A. Neurotrophin-3 upregulation associated with intravenous transplantation of bone marrow mononuclear cells induces axonal sprouting and motor functional recovery in the long term after neocortical ischaemia. Brain Res 2021; 1758:147292. [PMID: 33516814 DOI: 10.1016/j.brainres.2021.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Marcela Santana Bastos Boechat
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Igor Augusto Gusman Cunha
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Laso-García F, Diekhorst L, Gómez-de Frutos MC, Otero-Ortega L, Fuentes B, Ruiz-Ares G, Díez-Tejedor E, Gutiérrez-Fernández M. Cell-Based Therapies for Stroke: Promising Solution or Dead End? Mesenchymal Stem Cells and Comorbidities in Preclinical Stroke Research. Front Neurol 2019; 10:332. [PMID: 31024426 PMCID: PMC6467162 DOI: 10.3389/fneur.2019.00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a major health problem worldwide. It has been estimated that 90% of the population attributable risk of stroke is due to risk factors such as aging, hypertension, hyperglycemia, diabetes mellitus and obesity, among others. However, most animal models of stroke use predominantly healthy and young animals. These models ignore the main comorbidities associated with cerebrovascular disease, which could be one explanation for the unsuccessful bench-to-bedside translation of protective and regenerative strategies by not taking the patient's situation into account. This lack of success makes it important to incorporate comorbidities into animal models of stroke in order to study the effects of the various therapeutic strategies tested. Regarding cell therapy, the administration of stem cells in the acute and chronic phases has been shown to be safe and effective in experimental animal models of stroke. This review aims to show the results of studies with promising new therapeutic strategies such as mesenchymal stem cells, which are being tested in preclinical models of stroke associated with comorbidities and in elderly animals.
Collapse
Affiliation(s)
- Fernando Laso-García
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Luke Diekhorst
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Laura Otero-Ortega
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Blanca Fuentes
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Gerardo Ruiz-Ares
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Musa KI, Keegan TJ. The change of Barthel Index scores from the time of discharge until 3-month post-discharge among acute stroke patients in Malaysia: A random intercept model. PLoS One 2018; 13:e0208594. [PMID: 30571691 PMCID: PMC6301695 DOI: 10.1371/journal.pone.0208594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
Background Acute stroke results in functional disability measurable using the well-known Barthel Index. The objectives of the study are to describe the change in the Barthel Index score and to model the prognostic factors for Barthel Index change from discharge up to 3 months post-discharge using the random intercept model among patients with acute first ever stroke in Kelantan, Malaysia. Methods A total 98 in-hospital first ever acute stroke patients were recruited, and their Barthel Index scores were measured at the time of discharge, at 1 month and 3 months post-discharge. The Barthel Index was scored through telephone interviews. We employed the random intercept model from linear mixed effect regression to model the change of Barthel Index scores during the three months intervals. The prognostic factors included in the model were acute stroke subtypes, age, sex and time of measurement (at discharge, at 1 month and at 3 month post-discharge). Results The crude mean Barthel Index scores showed an increased trend. The crude mean Barthel Index at the time of discharge, at 1-month post-discharge and 3 months post-discharge were 35.1 (SD = 39.4), 64.4 (SD = 39.5) and 68.8 (SD = 38.9) respectively. Over the same period, the adjusted mean Barthel Index scores estimated from the linear mixed effect model increased from 39.6 to 66.9 to 73.2. The adjusted mean Barthel Index scores decreased as the age increased, and haemorrhagic stroke patients had lower adjusted mean Barthel Index scores compared to the ischaemic stroke patients. Conclusion Overall, the crude and adjusted mean Barthel Index scores increase from the time of discharge up to 3-month post-discharge among acute stroke patients. Time after discharge, age and stroke subtypes are the significant prognostic factors for Barthel Index score changes over the period of 3 months.
Collapse
Affiliation(s)
- Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kbg Kerian, Kelantan, Malaysia
- * E-mail:
| | - Thomas J. Keegan
- The Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
5
|
Evaluation of temperature induction in focal ischemic thermocoagulation model. PLoS One 2018; 13:e0200135. [PMID: 29975761 PMCID: PMC6033425 DOI: 10.1371/journal.pone.0200135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
The thermocoagulation model, which consists of focal cerebral ischemia with craniectomy, is helpful in studying permanent ischemic brain lesions and has good reproducibility and low mortality. This study analyzed the best conditions for inducing a focal ischemic lesion by thermocoagulation. We investigated parameters such as temperature and thermal dissipation in the brain tissue during induction and analyzed real-time blood perfusion, histological changes, magnetic resonance imaging (MRI), and motor behavior in a permanent ischemic stroke model. We used three-month-old male Wistar rats, weighing 300–350 g. In the first experiment, the animals were divided into four groups (n = 5 each): one sham surgery group and three ischemic lesion groups having thermocoagulation induction (TCI) temperatures of 200°C, 300°C, and 400°C, respectively, with blood perfusion (basal and 30 min after TCI) and 2,3,5-Triphenyl-tetrazolium chloride (TTC) evaluation at 2 h after TCI. In the second experiment, five groups (n = 5 each) were analyzed by MRI (basal and 24 h after TCI) and behavioral tests (basal and seven days after TCI) with the control group added for the surgical effects. The MRI and TTC analyses revealed that ischemic brain lesions expressively evolved, especially at TCI temperatures of 300°C and 400°C, and significant motor deficits were observed as the animals showed a decrease frequency of movement and an asymmetric pattern. We conclude that a TCI temperature of 400°C causes permanent ischemic stroke and motor deficit.
Collapse
|
6
|
Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice. Stem Cells Int 2018; 2018:2431567. [PMID: 29736174 PMCID: PMC5875038 DOI: 10.1155/2018/2431567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022] Open
Abstract
Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.
Collapse
|
7
|
Cucarián JD, León LA, Luna GA, Torres MR, Corredor K, Cardenas P. F. CARACTERIZACIÓN TEMPORO-ESPACIAL DEL PATRÓN DE MARCHA EN ROEDORES COMO MODELO ANIMAL DE LESIÓN CEREBRAL CEREBROVASCULAR. ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n3.65244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En la investigación sobre movimiento, la experimentación animal ha proporcionado fundamentación científica para la investigación clínica, mejorando procedimientos diagnósticos y de rehabilitación. Lesiones cerebrales en roedores pueden ser usadas para modelar síntomas locomotores, sensoriales y/o cognitivos. Con el propósito de determinar la funcionalidad locomotriz y sensorial en roedores, se han propuesto varios métodos de evaluación y pronóstico clínico para identificar y evaluar adaptaciones estructurales y mecanismos de neuro-recuperación. Esto ha permitido que métodos de intervención terapéutica, como el ejercicio físico, sean utilizados para restaurar funciones sensitivo-motoras y cognitivas en roedores y humanos. La extrapolación (translación) de los resultados de investigaciones en ciencias básicas a áreas clínicas supone la continua cooperación y retroalimentación entre investigadores y profesionales de la salud, favoreciendo la formulación de intervenciones terapéuticas más eficaces basadas en resultados obtenidos de la experimentación animal. El objetivo de esta revisión es exponer las principales deficiencias motoras y los métodos empleados para determinar la dificultad motriz en la marcha en roedores con lesión cerebrovascular, para lo cual se realizó una revisión de literatura, sobre términos definidos (MeSH), en las bases de datos PsychINFO, Medline y Web of Science, entre enero de 2000 y enero de 2017. Se excluyeron artículos de carácter cualitativo o narrativo, sin revisión por pares, disertaciones, tesis o trabajos de grado y resúmenes de conferencias. Se revisan algunas manifestaciones clínicas, su efecto en la locomotricidad en roedores, algunas metodologías usadas para generar lesiones y para estudiar la función motriz, los principales métodos de medición y algunos aspectos translacionales.
Collapse
|
8
|
Boltze J, Nitzsche F, Jolkkonen J, Weise G, Pösel C, Nitzsche B, Wagner DC. Concise Review: Increasing the Validity of Cerebrovascular Disease Models and Experimental Methods for Translational Stem Cell Research. Stem Cells 2017; 35:1141-1153. [DOI: 10.1002/stem.2595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Boltze
- Department of Translational Medicine and Cell Technology; Fraunhofer Research Institution for Marine Biotechnology and Cell Technology; Lübeck Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck; Lübeck Germany
| | - Franziska Nitzsche
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Radiology; McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pennsylvania USA
| | - Jukka Jolkkonen
- Department of Neurology; Institute of Clinical Medicine, University of Eastern Finland; Kuopio Finland
| | - Gesa Weise
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Neurology; University of Leipzig; Germany
| | - Claudia Pösel
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - Björn Nitzsche
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Nuclear Medicine; University Hospital Leipzig; Germany
| | - Daniel-Christoph Wagner
- Department of Cell Therapy; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Institute of Pathology, University Medical Center Mainz; Germany
| |
Collapse
|
9
|
Maintained LTP and Memory Are Lost by Zn 2+ Influx into Dentate Granule Cells, but Not Ca 2+ Influx. Mol Neurobiol 2017; 55:1498-1508. [PMID: 28176276 DOI: 10.1007/s12035-017-0428-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
The idea that maintained LTP and memory are lost by either increase in intracellular Zn2+ in dentate granule cells or increase in intracellular Ca2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K+ into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K+-induced increase in intracellular Zn2+ but not high K+-induced increase in intracellular Ca2+. High K+-induced disturbances of LTP and intracellular Zn2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn2+, but not increase in intracellular Ca2+. NMDA and glucocorticoid, which induced Zn2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca2+ influx.
Collapse
|
10
|
Rodent Gymnastics: Neurobehavioral Assays in Ischemic Stroke. Mol Neurobiol 2016; 54:6750-6761. [PMID: 27752994 DOI: 10.1007/s12035-016-0195-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Despite years of research, most preclinical trials on ischemic stroke have remained unsuccessful owing to poor methodological and statistical standards leading to "translational roadblocks." Various behavioral tests have been established to evaluate traits such as sensorimotor function, cognitive and social interactions, and anxiety-like and depression-like behavior. A test's validity is of cardinal importance as it influences the chance of a successful translation of preclinical results to clinical settings. The mission of choosing a behavioral test for a particular project is, therefore, imperative and the present review aims to provide a structured way to evaluate rodent behavioral tests with implications in ischemic stroke.
Collapse
|
11
|
Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SI. Systematic Review and Meta-Analysis of Bone Marrow-Derived Mononuclear Cells in Animal Models of Ischemic Stroke. Stroke 2016; 47:1632-9. [PMID: 27165959 DOI: 10.1161/strokeaha.116.012701] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Bone marrow-derived mononuclear cells (BMMNCs) offer the promise of augmenting poststroke recovery. There is mounting evidence of safety and efficacy of BMMNCs from preclinical studies of ischemic stroke; however, their pooled effects have not been described. METHODS Using Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines, we conducted a systematic review of preclinical literature for intravenous use of BMMNCs followed by meta-analyses of histological and behavioral outcomes. Studies were selected based on predefined criteria. Data were abstracted by 2 independent investigators. After quality assessment, the pooled effects were generated using mixed-effect models. Impact of possible biases on estimated effect size was evaluated. RESULTS Standardized mean difference and 95% confidence interval for reduction in lesion volume was significantly beneficial for BMMNC treatment (standardized mean difference: -3.3; 95% confidence interval, -4.3 to -2.3). n=113 each for BMMNC and controls. BMMNC-treated animals (n=161) also had improved function measured by cylinder test (standardized mean difference: -2.4; 95% confidence interval, -3.1 to -1.6), as compared with controls (n=205). A trend for benefit was observed for adhesive removal test and neurological deficit score. Study quality score (median: 6; Q1-Q3: 5-7) was correlated with year of publication. There was funnel plot asymmetry; however, the pooled effects were robust to the correction of this bias and remained significant in favor of BMMNC treatment. CONCLUSIONS BMMNCs demonstrate beneficial effects across histological and behavioral outcomes in animal ischemic stroke models. Although study quality has improved over time, considerable degree of heterogeneity calls for standardization in the conduct and reporting of experimentation.
Collapse
Affiliation(s)
- Farhaan S Vahidy
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston.
| | - Mohammad H Rahbar
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Hongjian Zhu
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Paul J Rowan
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Arvind B Bambhroliya
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| | - Sean I Savitz
- From the Department of Neurology, McGovern Medical School (F.S.V., A.B.B., S.I.S.), Department of Epidemiology, Human Genetics and Environmental Sciences (M.H.R.), Department of Biostatistics (H.Z.), and Department of Management, Policy and Community Health (P.J.R.), School of Public Health, University of Texas Health at Houston
| |
Collapse
|
12
|
Liu H, Li W, Liu Y, Zhang X, Zhou Y. Co-administration of aspirin and allogeneic adipose-derived stromal cells attenuates bone loss in ovariectomized rats through the anti-inflammatory and chemotactic abilities of aspirin. Stem Cell Res Ther 2015; 6:200. [PMID: 26474767 PMCID: PMC4609080 DOI: 10.1186/s13287-015-0195-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/20/2015] [Accepted: 10/01/2015] [Indexed: 01/21/2023] Open
Abstract
Introduction Osteoporosis is a syndrome of excessive skeletal fragility characterized by the loss of mass and deterioration of microarchitecture in bone. Single use of aspirin or adipose-derived stromal cells (ASCs) has been recognized recently to be effective against osteoporosis. The goal of the study was to evaluate the osteogenic effects of the co-administration of aspirin and allogeneic rat adipose-derived stromal cells (rASCs) on ovariectomized (OVX)-induced bone loss in rats. The underlying mechanisms were investigated in vitro and in vivo. Methods Firstly, allogeneic rASCs were isolated and cultured, and the conditioned medium (CM) from the maintenance of rASCs was collected. Secondly, the OVX rats were administrated CM, rASCs, aspirin (ASP) or rASCs + ASP, respectively. Twelve weeks later, the anti-inflammatory and osteogenic effects were assessed by micro-CT, undecalcified histological sections, dynamic histomorphometric analyses and serologic assays for biochemical markers. Finally, a Transwell migration assay in vitro and cell-trafficking analyses in vivo were used to explore the effects of aspirin on rASC migration. Results Systemic administration of aspirin and rASCs attenuated OVX-induced bone loss better than single use of aspirin or ASCs (p < 0.05, respectively). Next, we analyzed the underlying mechanisms of the anti-inflammatory and chemotactic abilities of aspirin. Aspirin suppressed serum levels of the pro-inflammatory cytokines on tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and the anti-inflammatory ability was positively associated with bone morphometry. Also, aspirin exhibited excellent chemotactic effects in vitro and accelerated the homing of allogeneic rASCs into bone marrow during early in vivo stages. Conclusions Co-administered aspirin and allogeneic ASCs can partially reverse OVX-induced bone loss in rats. This effect appears to be mediated by the anti-inflammatory and chemotactic abilities of aspirin.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Wei Li
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|