1
|
Mendes ÁGR, de Sousa GGV, França MDS, de Carvalho CAM, Batista EDJO, Passos ADCF, Oliveira KRHM, Herculano AM, de Moraes SAS. Astrocyte reactivity in spinal cord and functional impairment after tendon injury in rats. Heliyon 2021; 7:e06845. [PMID: 33981899 PMCID: PMC8082259 DOI: 10.1016/j.heliyon.2021.e06845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Astrocyte reactivity in the spinal cord may occur after peripheral neural damage. However, there is no data to report such reactivity after Achilles tendon injury. We investigate whether changes occur in the spinal cord, mechanical sensitivity and gait in two phases of repair after Achilles tendon injury. Wistar rats were divided into groups: control (CTRL, without rupture), 2 days post-injury (RUP2) and 21 days post-injury (RUP21). Functional and mechanical sensitivity tests were performed at 2 and 21 days post-injury (dpi). The spinal cords were processed, cryosectioned and activated astrocytes were immunostained by GFAP at 21 dpi. Astrocyte reactivity was observed in the L5 segment of the spinal cord with predominance in the white matter regions and decrease in the mechanical threshold of the ipsilateral paw only in RUP2. However, there was gait impairment in both RUP2 and RUP21. We conclude that during the acute phase of Achilles tendon repairment, there was astrocyte reactivity in the spinal cord and impairment of mechanical sensitivity and gait, whereas in the chronic phase only gait remains compromised.
Collapse
|
2
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
3
|
Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast 2017; 2017:2480689. [PMID: 28951789 PMCID: PMC5603132 DOI: 10.1155/2017/2480689] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of chronic neuropathic pain via neuronal-glial interactions following SCI.
Collapse
|
4
|
A new model of nerve injury in the rat reveals a role of Regulator of G protein Signaling 4 in tactile hypersensitivity. Exp Neurol 2016; 286:1-11. [PMID: 27641322 DOI: 10.1016/j.expneurol.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
Abstract
Tactile hypersensitivity is one of the most debilitating symptoms of neuropathic pain syndromes. Clinical studies have suggested that its presence at early postoperative stages may predict chronic (neuropathic) pain after surgery. Currently available animal models are typically associated with consistent tactile hypersensitivity and are therefore limited to distinguish between mechanisms that underlie tactile hypersensitivity as opposed to mechanisms that protect against it. In this study we have modified the rat model of spared nerve injury, restricting the surgical lesion to a single peripheral branch of the sciatic nerve. This modification reduced the prevalence of tactile hypersensitivity from nearly 100% to approximately 50%. With this model, we here also demonstrated that the Regulator of G protein Signaling 4 (RGS4) was specifically up-regulated in the lumbar dorsal root ganglia and dorsal horn of rats developing tactile hypersensitivity. Intrathecal delivery of the RGS4 inhibitor CCG63802 was found to reverse tactile hypersensitivity for a 1h period. Moreover, tactile hypersensitivity after modified spared nerve injury was most frequently persistent for at least four weeks and associated with higher reactivity of glial cells in the lumbar dorsal horn. Based on these data we suggest that this new animal model of nerve injury represents an asset in understanding divergent neuropathic pain outcomes, so far unravelling a role of RGS4 in tactile hypersensitivity. Whether this model also holds promise in the study of the transition from acute to chronic pain will have to be seen in future investigations.
Collapse
|
5
|
Yu J, Tang YY, Wang RR, Lou GD, Hu TT, Hou WW, Yue JX, Ohtsu H, Shi LY, Zhang SH, Chen Z. A critical time window for the analgesic effect of central histamine in the partial sciatic ligation model of neuropathic pain. J Neuroinflammation 2016; 13:163. [PMID: 27342775 PMCID: PMC4921020 DOI: 10.1186/s12974-016-0637-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022] Open
Abstract
Background It is known that histamine participates in pain modulation. However, the effect of central histamine on neuropathic pain is not fully understood. Here, we report a critical time window for the analgesic effect of central histamine in the partial sciatic nerve ligation model of neuropathic pain. Methods Neuropathic pain was induced by partial sciatic nerve ligation (PSL) in rats, wild-type (C57BL/6J) mice and HDC−/− (histidine decarboxylase gene knockout) and IL-1R−/− (interleukin-1 receptor gene knockout) mice. Histidine, a precursor of histamine that can increase the central histamine levels, was administered intraperitoneally (i.p.). Histidine decarboxylase (HDC) enzyme inhibitor α-fluoromethylhistidine was administered intracerebroventricularly (i.c.v.). Histamine H1 receptor antagonist mepyramine and H2 receptor antagonist cimetidine were given intrathecally (i.t.) and intracisternally (i.c.). Withdrawal thresholds to tactile and heat stimuli were measured with a set of von Frey hairs and infrared laser, respectively. Immunohistochemistry and Western blot were carried out to evaluate the morphology of microglia and IL-1β production, respectively. Results Histidine (100 mg/kg, i.p.) administered throughout days 0–3, 0–7, or 0–14 postoperatively (PO) alleviated mechanical allodynia and thermal hyperalgesia in the hindpaw following PSL in rats. Intrathecal histamine reversed PSL-induced thermal hyperalgesia in a dose-dependent manner and intracisternal histamine alleviated both mechanical allodynia and thermal hyperalgesia. Moreover, α-fluoromethylhistidine (i.c.v.) abrogated the analgesic effect of histidine. However, histidine treatment initiated later than the first postoperative day (treatment periods included days 2–3, 4–7, and 8–14 PO) did not show an analgesic effect. In addition, histidine treatment initiated immediately, but not 3 days after PSL, inhibited microglial activation and IL-1β upregulation in the lumbar spinal cord, in parallel with its effects on behavioral hypersensitivity. Moreover, the inhibitory effects on pain hypersensitivity and spinal microglial activation were absent in HDC−/− mice and IL-1R−/− mice. H1 receptor antagonist mepyramine (200 ng/rat i.t. or i.c.), but not H2 receptor antagonist cimetidine (200, 500 ng/rat i.t. or 500 ng/rat i.c.), blocked the effects of histidine on pain behavior and spinal microglia. Conclusions These results demonstrate that central histamine is analgesic within a critical time window in the PSL model of neuropathic pain via histamine H1 receptors. This effect may partly relate to the inhibition of microglial activation and IL-1β production in the spinal cord following nerve injury. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0637-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying-Ying Tang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ran-Ran Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guo-Dong Lou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ting-Ting Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei-Wei Hou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jia-Xing Yue
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hiroshi Ohtsu
- Department of Engineering, School of Medicine, Tohoku University, Aoba-ku, Sendai, 980-8775, Japan
| | - Li-Yun Shi
- Department of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shi-Hong Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Bosier B, Doyen PJ, Brolet A, Muccioli GG, Ahmed E, Desmet N, Hermans E, Deumens R. Inhibition of the regulator of G protein signalling RGS4 in the spinal cord decreases neuropathic hyperalgesia and restores cannabinoid CB1 receptor signalling. Br J Pharmacol 2015; 172:5333-46. [PMID: 26478461 PMCID: PMC5341217 DOI: 10.1111/bph.13324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/24/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Regulators of G protein signalling (RGS) are major determinants of metabotropic receptor activity, reducing the lifespan of the GTP-bound state of G proteins. Because the reduced potency of analgesic agents in neuropathic pain may reflect alterations in RGS, we assessed the effects of CCG 63802, a specific RGS4 inhibitor, on pain hypersensitivity and signalling through cannabinoid receptors, in a model of neuropathic pain. EXPERIMENTAL APPROACH The partial sciatic nerve ligation (PSNL) model in male Sprague Dawley rats was used to measure paw withdrawal thresholds to mechanical (von Frey hairs) or thermal (Hargreaves method) stimuli, during and after intrathecal injection of CCG 63802. HEK293 cells expressing CB1 receptors and conditional expression of RGS4 were used to correlate cAMP production and ERK phosphorylation with receptor activation and RGS4 action. KEY RESULTS Treatment of PSNL rats with CCG 63802, twice daily for 7 days after nerve injury, attenuated thermal hyperalgesia during treatment. Spinal levels of anandamide were higher in PSNL animals, irrespective of the treatment. Although expression of CB1 receptors was unaffected, HU210-induced CB1 receptor signalling was inhibited in PSNL rats and restored after intrathecal CCG 63802. In transfected HEK cells expressing CB1 receptors and RGS4, inhibition of cAMP production, a downstream effect of CB1 receptor signalling, was blunted after RGS4 overexpression. RGS4 expression also attenuated the CB1 receptor-controlled activation of ERK1/2. CONCLUSIONS AND IMPLICATIONS Inhibition of spinal RGS4 restored endogenous analgesic signalling pathways and mitigated neuropathic pain. Signalling through CB1 receptors may be involved in this beneficial effect.
Collapse
Affiliation(s)
- Barbara Bosier
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Pierre J. Doyen
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Amandine Brolet
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Eman Ahmed
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
- Department of Clinical PharmacologyFaculty of Medicine, Suez Canal UniversityIsmailiaEgypt
| | - Nathalie Desmet
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Emmanuel Hermans
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| | - Ronald Deumens
- Neuropharmacology Group, Institute of NeuroscienceUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|