1
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024:10.1007/s00232-024-00325-0. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Jung J, Kang J, Kim T. Attenuation of homeostatic sleep response and rest-activity circadian rhythm in vitamin D deficient mice. Chronobiol Int 2023; 40:1097-1110. [PMID: 37661839 DOI: 10.1080/07420528.2023.2253299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The link between vitamin D deficiency (VDD) and sleep disturbances has long been suggested. However, the direct causality between VDD, sleep disturbances, and circadian rhythm remains unclear. We aimed to characterize sleep-wake behavior and circadian rhythms in an animal model of VDD. VDD was induced by feeding vitamin D-deficient chow, and we analyzed sleep and circadian rhythm parameters. During light period, VDD mice exhibited reduced wake with more frequent wake bouts and increased NREM sleep time. However, during dark period, the wake EEG power spectrum peaked at theta band frequency, and slow-wave energy was suppressed in mice with VDD. Rest-activity analyses revealed increased circadian period, lower wheel counts, and more frequent and short activity bouts during VDD. Combining sleep and circadian data, we found significantly suppressed activities during the hours with a wake duration shorter than 30 minutes. Moreover, mice in VDD state exhibited a negative correlation between wake theta power and hourly wheel-running counts during dark period. Our data point to a direct link between VDD and disturbances in sleep and rest-activity circadian rhythm, featuring frequent wake bouts during the sleeping phase, reduced sleep pressure build-up in dark period, and reduced activity levels due to increased susceptibility to sleepiness.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
3
|
Han G, Matsumoto S, Diaz J, Greene RW, Vogt KE. Dihydropyridine calcium blockers do not interfere with non-rapid eye movement sleep. Front Neurosci 2022; 16:969712. [PMID: 36340773 PMCID: PMC9626806 DOI: 10.3389/fnins.2022.969712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/21/2022] [Indexed: 09/07/2024] Open
Abstract
Non-rapid eye movement (NREM) sleep is tightly homeostatically regulated and essential for survival. In the electroencephalogram (EEG), oscillations in the delta (0.5-4 Hz) range are prominent during NREM sleep. These delta oscillations are, to date, the best indicator for homeostatic sleep regulation; they are increased after prolonged waking and fade during NREM sleep. The precise mechanisms underlying sleep homeostasis and the generation of EEG delta oscillations are still being investigated. Activity-dependent neuronal calcium influx has been hypothesized to play an important role in generating delta oscillations and might be involved in downstream signaling that mediates sleep function. Dihydropyridine blockers of L-type voltage-gated calcium channels (VGCCs) are in wide clinical use to treat hypertension and other cardiovascular disorders and are readily blood-brain-barrier penetrant. We therefore, wanted to investigate their potential effects on EEG delta oscillation and homeostatic NREM sleep regulation in freely behaving mice. In vivo two-photon imaging of cortical neurons showed larger spontaneous calcium transients in NREM sleep compared to waking. Application of the dihydropyridine calcium blocker nicardipine significantly reduced cortical calcium transients without affecting the generation of delta oscillations. Nicardipine also did not affect EEG delta oscillations over 24 h following application. The time spent in NREM sleep and NREM episode duration was also not affected. Thus, acute block of calcium entry through L-type VGCCs does not interfere with EEG delta oscillations or their homeostatic regulation, despite prior evidence from calcium channel knockout mice.
Collapse
Affiliation(s)
- GoEun Han
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Sumire Matsumoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Javier Diaz
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Robert W. Greene
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Psychiatry & Neuroscience, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Kaspar E. Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Batra T, Buniyaadi A, Kumar V. Daytime restriction of feeding prevents illuminated night-induced impairment of metabolism and sleep in diurnal zebra finches. Physiol Behav 2022; 253:113866. [PMID: 35659511 DOI: 10.1016/j.physbeh.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
We investigated whether nocturnal eating was causal to the impairment of metabolism and sleep disruption in diurnal animals exposed to illuminated nights. Adult zebra finches hatched and raised in 12 h light: 12 h darkness (LD) were exposed to 5-lux dim light at night (dLAN, two groups), with a control group maintained on LD. For the next 3 weeks, the food availability to one of the dLAN groups was restricted to the 12 h light period (dLAN -F); the other dLAN (dLAN +F) and LD groups were continued on ad lib feeding. In spite of similar food intakes, dLAN +F condition led to the fat accumulation and weight gain. These birds showed concurrent changes in hepatic expression of genes associated with carbohydrate and lipid metabolism, suggesting an enhanced gluconeogenesis and impaired fatty acids synthesis. Increased sirt1 mRNA levels indicated the activation of molecular mechanisms to counter-balance the metabolic damage under dLAN +F. Furthermore, reduced bout length and total duration of the nocturnal sleep suggested a poorer sleep in dLAN +F condition. Negative sleep effects of dLAN were supported by the lower hypothalamic expression of sleep promoting sik3 and camkii genes, and higher mRNA expression of awake promoting achm3 gene in dLAN +F, compared to the LD condition. Importantly, dLAN-induced negative effects in metabolism and sleep were alleviated in the dLAN -F group. These results suggest the role of timed feeding in alleviating the negative impact of illuminated nights in metabolism and sleep in diurnal zebra finches.
Collapse
Affiliation(s)
- Twinkle Batra
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Amaan Buniyaadi
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Vinod Kumar
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
5
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
6
|
Batra T, Malik I, Prabhat A, Bhardwaj SK, Kumar V. Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proc Biol Sci 2020; 287:20192952. [PMID: 32517617 DOI: 10.1098/rspb.2019.2952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We investigated the effects of exposure at ecologically relevant levels of dim light at night (dLAN) on sleep and the 24 h hypothalamic expression pattern of genes involved in the circadian timing (per2, bmal1, reverb-β, cry1, ror-α, clock) and sleep regulatory pathways (cytokines: tlr4, tnf-α, il-1β, nos; Ca2+-dependent pathway: camk2, sik3, nr3a; cholinergic receptor, achm3) in diurnal female zebra finches. Birds were exposed to 12 h light (150 lux) coupled with 12 h of absolute darkness or of 5 lux dim light for three weeks. dLAN fragmented the nocturnal sleep in reduced bouts, and caused sleep loss as evidenced by reduced plasma oxalate levels. Under dLAN, the 24 h rhythm of per2, but not bmal1 or reverb-β, showed a reduced amplitude and altered peak expression time; however, clock, ror-α and cry1 expressions showed an abolition of the 24 h rhythm. Decreased tlr4, il-1β and nos, and the lack of diurnal difference in achm3 messenger RNA levels suggested an attenuated inhibition of the arousal system (hence, awake state promotion) under dLAN. Similarly, changes in camk2, sik3 and nr3a expressions suggested dLAN-effects on Ca2+-dependent sleep-inducing pathways. These results demonstrate dLAN-induced negative effects on sleep and associated hypothalamic molecular pathways, and provide insights into health risks of illuminated night exposures to diurnal animals.
Collapse
Affiliation(s)
- Twinkle Batra
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Abhilash Prabhat
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
7
|
Abstract
Rapid-eye movement (REM) sleep is a paradoxical sleep state characterized by brain activity similar to wakefulness, rapid-eye-movement, and lack of muscle tone. REM sleep is a fundamental brain function, evolutionary conserved across species, including human, mouse, bird, and even reptiles. The physiological importance of REM sleep is highlighted by severe sleep disorders incurred by a failure in REM sleep regulation. Despite the intense interest in the mechanism of REM sleep regulation, the molecular machinery is largely left to be investigated. In models of REM sleep regulation, acetylcholine has been a pivotal component. However, even newly emerged techniques such as pharmacogenetics and optogenetics have not fully clarified the function of acetylcholine either at the cellular level or neural-circuit level. Recently, we discovered that the Gq type muscarinic acetylcholine receptor genes, Chrm1 and Chrm3, are essential for REM sleep. In this review, we develop the perspective of current knowledge on REM sleep from a molecular viewpoint. This should be a starting point to clarify the molecular and cellular machinery underlying REM sleep regulation and will provide insights to explore physiological functions of REM sleep and its pathological roles in REM-sleep-related disorders such as depression, PTSD, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
A primary goal of sleep research is to understand the molecular basis of sleep. Although some sleep/wake-promoting circuits and secreted substances have been identified, the detailed molecular mechanisms underlying the regulation of sleep duration have been elusive. Here, to address these mechanisms, we developed a simple computational model of a cortical neuron with five channels and a pump, which recapitulates the cortical electrophysiological characteristics of slow-wave sleep (SWS) and wakefulness. Comprehensive bifurcation and detailed mathematical analyses predicted that leak K+ channels play a role in generating the electrophysiological characteristics of SWS, leading to a hypothesis that leak K+ channels play a role in the regulation of sleep duration. To test this hypothesis experimentally, we comprehensively generated and analyzed 14 KO mice, and found that impairment of the leak K+ channel (Kcnk9) decreased sleep duration. Based on these results, we hypothesize that leak K+ channels regulate sleep duration in mammals.
Collapse
|
9
|
Hayashi Y, Itohara S. Cutting-edge approaches to unwrapping the mysteries of sleep. Neurosci Res 2017. [DOI: 10.1016/j.neures.2017.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017; 118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/31/2023]
Abstract
Sleep, a common event in daily life, has clear benefits for brain function, but what goes on in the brain when we sleep remains unclear. Sleep was long regarded as a silent state of the brain because the brain seemingly lacks interaction with the surroundings during sleep. Since the discovery of electrical activities in the brain at rest, electrophysiological methods have revealed novel concepts in sleep research. During sleep, the brain generates oscillatory activities that represent characteristic states of sleep. In addition to electrophysiology, opto/chemogenetics and two-photon Ca2+ imaging methods have clarified that the sleep/wake states organized by neuronal and glial ensembles in the cerebral cortex are transitioned by neuromodulators. Even with these methods, however, it is extremely difficult to elucidate how and when neuromodulators spread, accumulate, and disappear in the extracellular space of the cortex. Thus, real-time monitoring of neuromodulator dynamics at high spatiotemporal resolution is required for further understanding of sleep. Toward direct detection of neuromodulator behavior during sleep and wakefulness, in this review, we discuss developing imaging techniques based on the activation of G-protein-coupled receptors that allow for visualization of neuromodulator dynamics.
Collapse
Affiliation(s)
- Takeshi Kanda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Kaoru Ohyama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroki Muramoto
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Nami Kitajima
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroshi Sekiya
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|