1
|
Boldinova EO, Baranovskiy AG, Filina YV, Miftakhova RR, Shamsutdinova YF, Tahirov TH, Makarova AV. PrimPol Variant V102A with Altered Primase and Polymerase Activities. J Mol Biol 2024; 436:168542. [PMID: 38492718 DOI: 10.1016/j.jmb.2024.168542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, 119334 Moscow, Russia
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yulia V Filina
- "Translational Oncology" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Regina R Miftakhova
- "Translational Oncology" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Yana F Shamsutdinova
- Chemotherapy Department №1, Republican Clinical Oncology Dispensary of the Ministry of Health of the Republic of Tatarstan Named After Prof. M.Z. Sigal, Sibirskiy trakt 29, 420029 Kazan, Russia
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alena V Makarova
- National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34 / 5, 119334 Moscow, Russia.
| |
Collapse
|
2
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
3
|
Calvo P, Martínez-Jiménez MI, Díaz M, Stojkovic G, Kasho K, Guerra S, Wanrooij S, Méndez J, Blanco L. Motif WFYY of human PrimPol is crucial to stabilize the incoming 3'-nucleotide during replication fork restart. Nucleic Acids Res 2021; 49:8199-8213. [PMID: 34302490 PMCID: PMC8373064 DOI: 10.1093/nar/gkab634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/12/2022] Open
Abstract
PrimPol is the second primase in human cells, the first with the ability to start DNA chains with dNTPs. PrimPol contributes to DNA damage tolerance by restarting DNA synthesis beyond stalling lesions, acting as a TLS primase. Multiple alignment of eukaryotic PrimPols allowed us to identify a highly conserved motif, WxxY near the invariant motif A, which contains two active site metal ligands in all members of the archeo-eukaryotic primase (AEP) superfamily. In vivo and in vitro analysis of single variants of the WFYY motif of human PrimPol demonstrated that the invariant Trp87 and Tyr90 residues are essential for both primase and polymerase activities, mainly due to their crucial role in binding incoming nucleotides. Accordingly, the human variant F88L, altering the WFYY motif, displayed reduced binding of incoming nucleotides, affecting its primase/polymerase activities especially during TLS reactions on UV-damaged DNA. Conversely, the Y89D mutation initially associated with High Myopia did not affect the ability to rescue stalled replication forks in human cells. Collectively, our data suggest that the WFYY motif has a fundamental role in stabilizing the incoming 3′-nucleotide, an essential requisite for both its primase and TLS abilities during replication fork restart.
Collapse
Affiliation(s)
- Patricia A Calvo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | | | - Marcos Díaz
- Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Gorazd Stojkovic
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Susana Guerra
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Sjoerd Wanrooij
- Correspondence may also be addressed to Sjoerd Wanrooij. Tel: +46 722460309;
| | - Juan Méndez
- Correspondence may also be addressed to Juan Méndez. Tel: +34 917328000; Fax: +34 917328033;
| | - Luis Blanco
- To whom correspondence should be addressed. Tel: +34 911964685; Fax: +34 911964401;
| |
Collapse
|
4
|
Klein IL, van de Loo KFE, Smeitink JAM, Janssen MCH, Kessels RPC, van Karnebeek CD, van der Veer E, Custers JAE, Verhaak CM. Cognitive functioning and mental health in mitochondrial disease: A systematic scoping review. Neurosci Biobehav Rev 2021; 125:57-77. [PMID: 33582231 DOI: 10.1016/j.neubiorev.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial diseases (MDs) are rare, heterogeneous, hereditary and progressive in nature. In addition to the serious somatic symptoms, patients with MD also experience problems regarding their cognitive functioning and mental health. We provide an overview of all published studies reporting on any aspect of cognitive functioning and/or mental health in patients with MD and their relatives. A total of 58 research articles and 45 case studies were included and critically reviewed. Cognitive impairments in multiple domains were reported. Mental disorders were frequently reported, especially depression and anxiety. Furthermore, most studies showed impairments in self-reported psychological functioning and high prevalence of mental health problems in (matrilineal) relatives. The included studies showed heterogeneity regarding patient samples, measurement instruments and reference groups, making comparisons cautious. Results highlight a high prevalence of cognitive impairments and mental disorders in patients with MD. Recommendations for further research as well as tailored patientcare with standardized follow-up are provided. Key gaps in the literature are identified, of which studies on natural history are of highest importance.
Collapse
Affiliation(s)
- Inge-Lot Klein
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Kim F E van de Loo
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Jan A M Smeitink
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Khondrion BV, Philips van Leydenlaan 15, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Internal Medicine, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Radboud University Medical Center, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, Postbus 9104, 6500 HE, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, d'n Herk 90, 5803 DN, Venray, the Netherlands
| | - Clara D van Karnebeek
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Elja van der Veer
- International Mito Patients Association, 2861 AD, Bergambacht, the Netherlands
| | - José A E Custers
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Christianne M Verhaak
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Finsterer J, Chatterjee S. Chiropractic-Responsive Vestibular Involvement in Mitochondrial Disorders. J Chiropr Med 2021; 19:260-261. [PMID: 33536863 DOI: 10.1016/j.jcm.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 10/22/2022] Open
Affiliation(s)
- Josef Finsterer
- Messerli Institute, Krankenanstalt Rudoflstiftung, Vienna, Austria
| | - Subhankar Chatterjee
- Department of General Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand
| |
Collapse
|
6
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
7
|
Yokotsuka-Ishida S, Nakamura M, Tomiyasu Y, Nagai M, Kato Y, Tomiyasu A, Umehara H, Hayashi T, Sasaki N, Ueno SI, Sano A. Positional cloning and comprehensive mutation analysis identified a novel KDM2B mutation in a Japanese family with minor malformations, intellectual disability, and schizophrenia. J Hum Genet 2021; 66:597-606. [PMID: 33402700 DOI: 10.1038/s10038-020-00889-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 11/09/2022]
Abstract
The importance of epigenetic control in the development of the central nervous system has recently been attracting attention. Methylation patterns of lysine 4 and lysine 36 in histone H3 (H3K4 and H3K36) in the central nervous system are highly conserved among species. Numerous complications of body malformations and neuropsychiatric disorders are due to abnormal histone H3 methylation modifiers. In this study, we analyzed a Japanese family with a dominant inheritance of symptoms including Marfan syndrome-like minor physical anomalies (MPAs), intellectual disability, and schizophrenia (SCZ). We performed positional cloning for this family using a single nucleotide polymorphism (SNP) array and whole-exome sequencing, which revealed a missense coding strand mutation (rs1555289644, NM_032590.4: c.2173G>A, p.A725T) in exon 15 on the plant homeodomain of the KDM2B gene as a possible cause of the disease in the family. The exome sequencing revealed that within the coding region, only a point mutation in KDM2B was present in the region with the highest logarithm of odds score of 2.41 resulting from whole genome linkage analysis. Haplotype analysis revealed co-segregation with four affected family members (IV-9, III-4, IV-5, and IV-8). Lymphoblastoid cell lines from the proband with this mutation showed approximately halved KDM2B expression in comparison with healthy controls. KDM2B acts as an H3K4 and H3K36 histone demethylase. Our findings suggest that haploinsufficiency of KDM2B in the process of development, like other H3K4 and H3K36 methylation modifiers, may have caused MPAs, intellectual disability, and SCZ in this Japanese family.
Collapse
Affiliation(s)
- Saeko Yokotsuka-Ishida
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masayuki Nakamura
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Yoko Tomiyasu
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mio Nagai
- Division of Psychiatry, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Yuko Kato
- Division of Psychiatry, Jiundo Hospital, Tokyo, Japan
| | - Akiyuki Tomiyasu
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromi Umehara
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takehiro Hayashi
- Department of Social Welfare, The International University of Kagoshima, Kagoshima, Japan
| | - Natsuki Sasaki
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine Toon, Kagoshima, Japan
| | - Akira Sano
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
8
|
Kasamo K, Nakamura M. A response to the Letter to the Editor entitled “PRIMPOL variants cause multi-system mitochondrial disorder” by Finsterer J. Neurosci Res 2020. [DOI: 10.1016/j.neures.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Pasupa K, Rathasamuth W, Tongsima S. Discovery of significant porcine SNPs for swine breed identification by a hybrid of information gain, genetic algorithm, and frequency feature selection technique. BMC Bioinformatics 2020; 21:216. [PMID: 32456608 PMCID: PMC7251909 DOI: 10.1186/s12859-020-3471-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
Background The number of porcine Single Nucleotide Polymorphisms (SNPs) used in genetic association studies is very large, suitable for statistical testing. However, in breed classification problem, one needs to have a much smaller porcine-classifying SNPs (PCSNPs) set that could accurately classify pigs into different breeds. This study attempted to find such PCSNPs by using several combinations of feature selection and classification methods. We experimented with different combinations of feature selection methods including information gain, conventional as well as modified genetic algorithms, and our developed frequency feature selection method in combination with a common classification method, Support Vector Machine, to evaluate the method’s performance. Experiments were conducted on a comprehensive data set containing SNPs from native pigs from America, Europe, Africa, and Asia including Chinese breeds, Vietnamese breeds, and hybrid breeds from Thailand. Results The best combination of feature selection methods—information gain, modified genetic algorithm, and frequency feature selection hybrid—was able to reduce the number of possible PCSNPs to only 1.62% (164 PCSNPs) of the total number of SNPs (10,210 SNPs) while maintaining a high classification accuracy (95.12%). Moreover, the near-identical performance of this PCSNPs set to those of bigger data sets as well as even the entire data set. Moreover, most PCSNPs were well-matched to a set of 94 genes in the PANTHER pathway, conforming to a suggestion by the Porcine Genomic Sequencing Initiative. Conclusions The best hybrid method truly provided a sufficiently small number of porcine SNPs that accurately classified swine breeds.
Collapse
Affiliation(s)
- Kitsuchart Pasupa
- Faculty of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Wanthanee Rathasamuth
- Faculty of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khong Luang, 12120, Thailand
| |
Collapse
|