1
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
2
|
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2023; 24:ijms24065921. [PMID: 36982996 PMCID: PMC10051444 DOI: 10.3390/ijms24065921] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
3
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
SenGupta T, Lefol Y, Lirussi L, Suaste V, Luders T, Gupta S, Aman Y, Sharma K, Fang EF, Nilsen H. Krill oil protects dopaminergic neurons from age-related degeneration through temporal transcriptome rewiring and suppression of several hallmarks of aging. Aging (Albany NY) 2022; 14:8661-8687. [DOI: 10.18632/aging.204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tanima SenGupta
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Yohan Lefol
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Lisa Lirussi
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Veronica Suaste
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Torben Luders
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Swapnil Gupta
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Yahyah Aman
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Kulbhushan Sharma
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Evandro Fei Fang
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
| |
Collapse
|
5
|
Shi J, Wang Y, Lei Y, Chen X, Liu Y, Xu YJ. Lipidome reveals the alleviation of krill oil on the impairment of acrylamide. Food Funct 2022; 13:8012-8021. [DOI: 10.1039/d2fo00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Krill oil has rich content of polyunsaturated fatty acids and various biological functions. Previous researches have demonstrated that krill oil is helpful to improve the locomotion via antioxidation and regulation...
Collapse
|
6
|
Shi J, Wang Y, Jiang F, Liu Y, Xu YJ. The effect of krill oil on longevity and locomotion: a pilot study. Mol Omics 2021; 18:206-213. [PMID: 34935825 DOI: 10.1039/d1mo00373a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Krill oil as a dietary supplement is popular with consumers. Several experimental and clinical trials have suggested that krill oil is beneficial for longevity and locomotion, but the underlying mechanisms for this have remained largely elusive. In this study, we investigated alleviation of impairment of Caenorhabditis elegans by polar compounds from frying oil with the use of krill oil. Observations of life span and locomotion demonstrated that the intake of krill oil increased median survival by 17.86%, head thrashes by 27.79% and body bends by 20.78% for impaired C. elegans. Metabolomic analysis revealed that krill oil could significantly restore the negative alterations caused by polar compounds, including upregulation of serine, tyrosine, palmitic acid and stearic acid, and downregulation of maltose 6'-phosphate, UDP-glucose, glutamic acid, phosphoserine and 25-hydroxyvitamin D3. Additionally, intake of krill oil also changed some metabolites that were irrelevant to impairment by polar compounds, but were beneficial for health for C. elegans. Metabolomics investigations indicated that krill oil ameliorates energy metabolism and alleviates oxidative stress and excitotoxicity caused by polar compounds on C. elegans. The data obtained in this study will facilitate future functional studies of krill oil.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Essential Fatty Acids as Biomedicines in Cardiac Health. Biomedicines 2021; 9:biomedicines9101466. [PMID: 34680583 PMCID: PMC8533423 DOI: 10.3390/biomedicines9101466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The destructive impact of cardiovascular diseases on health, including heart failure, peripheral artery disease, atherosclerosis, stroke, and other cardiac pathological conditions, positions these health conditions as leading causes of increased global mortality rates, thereby impacting the human quality of life. The considerable changes in modern lifestyles, including the increase in food intake and the change in eating habits, will unavoidably lead to an unbalanced consumption of essential fatty acids, with a direct effect on cardiovascular health problems. In the last decade, essential fatty acids have become the main focus of scientific research in medical fields aiming to establish their impact for preventing cardiovascular diseases and the associated risk factors. Specifically, polyunsaturated fatty acids (PUFA), such as omega 3 fatty acids, and monounsaturated fatty acids from various sources are mentioned in the literature as having a cardio-protective role, due to various biological mechanisms that are still to be clarified. This review aims to describe the major biological mechanisms of how diets rich in essential fatty acids, or simply essential fatty acid administration, could have anti-inflammatory, vasodilatory, anti-arrhythmic, antithrombotic, antioxidant, and anti-atherogenic effects. This review describes findings originating from clinical studies in which dietary sources of FAs were tested for their role in mitigating the impact of heart disorders in human health.
Collapse
|
8
|
Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Mar Drugs 2021; 19:md19060306. [PMID: 34073184 PMCID: PMC8226823 DOI: 10.3390/md19060306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.
Collapse
|
10
|
Du C, Hou J, Wang C, Zhang M, Zheng Y, Yang G, Hu Y. Effects of safflower yellow on cholesterol levels in serum and brain tissue of APP/PS1 mice. Metab Brain Dis 2021; 36:557-569. [PMID: 33550459 DOI: 10.1007/s11011-021-00680-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is an aggressive neurodegenerative disease associated with cognitive decline, memory, language, and visual-spatial coordination disorders that eventually lead to complete loss of basic function. Hypercholesterolemia plays an important role in the pathogenesis of AD and its related diseases. Safflower yellow (SY) is a natural chalcone compound isolated from safflower, which has the effect of antioxidation and weight loss. Previous studies have shown that SY has a significant improvement in learning and memory in various AD model animals. In the early stage of proteomic technology, we found that the cholesterol synthesis rate-limiting enzyme Mevalonate decarboxylase (MVD) was abnormally high in dementia rats, and the expression level of MVD decreased after SY treatment. We speculated that SY may improve the learning and memory ability of AD mice by affecting cholesterol metabolism. The purpose of this study was to evaluate the effect of SY on regulating cholesterol metabolism and improving dementia. The area of amyloid-β (Aβ) plaque in the brain of APP/PS1 mice and various blood biochemical and molecular biological indexes was detected. Through behavioral experiments, we found that APP/ PS1 mice had significant learning and memory impairment compared with wild type mice(P < 0.01). SY (30 mg/kg) treatment for 1 month can significantly improve the learning and memory ability of APP/PS1 mice (P < 0.01). Our results showed that SY decreased serum Total cholesterol (TC) and Triglyceride (TG) and increased the level of High-density lipoprotein (HDL). HE staining obscured that SY affect the changes of liver tissue in APP/PS1 mice (P < 0.05 and P < 0.01). We found that SY reduced the expression of MVD and Apolipoprotein E (APOE4) in the cortex (P < 0.05 and P < 0.01). In summary, SY can effectively control cholesterol in serum and brain and change the degeneration of liver tissue. SY improves Alzheimer's disease by lowering serum, cortex and cortical cholesterol.
Collapse
Affiliation(s)
- Chao Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jiawei Hou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Chunhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Mengyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Yanjie Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Guang Yang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
11
|
Fu M, Zhang X, Zhang X, Yang L, Luo S, Liu H. Autophagy Plays a Role in the Prolongation of the Life Span of Caenorhabditis elegans by Astaxanthin. Rejuvenation Res 2020; 24:198-205. [PMID: 33115330 DOI: 10.1089/rej.2020.2355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (AST), a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. The effect of AST on longevity and its physiological and molecular mechanism are still unclear. In this study, we proved that AST could prolong the life span of Caenorhabditis elegans. To uncover whether AST could delay aging by upregulating autophagy, we measured the expression of autophagy gene and the life span of autophagy gene bec-1 mutant nematodes, and the results showed that the expression of autophagy gene was upregulated after AST intervention and the disruption of bec-1 weakened the extension of the life span. To explore the molecular mechanism of AST-induced autophagy upregulation, we knocked out the daf-16 or hlh-30 (key genes of insulin/insulin growth factor-1 [IGF-1] signal pathway or target of rapamycin [TOR] signal pathway) by RNA interference, and the expression of autophagy gene lgg-1 decreased. Collectively, our results strongly suggest that autophagy, which is both the insulin/IGF-1 signal pathway dependent and TOR signal pathway dependent, plays a role in the prolongation of the life span of Caenorhabditis elegans by AST.
Collapse
Affiliation(s)
- Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, Guangzhou, China
| | - Liu Yang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Zhao J, Jiang K, Chen Y, Chen J, Zheng Y, Yu H, Zhu J. Preparation and Characterization of Microemulsions Based on Antarctic Krill Oil. Mar Drugs 2020; 18:E492. [PMID: 32993042 PMCID: PMC7601059 DOI: 10.3390/md18100492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antarctic krill oil is high in nutritional value and has biological functions like anti-inflammation and hypolipidemic effects. But it has and unpleasant smell, and unsaturated fatty acids are prone to oxidative deterioration. Its high viscosity and low solubility in water make it difficult for processing. Microemulsion can be a new promising route for development of krill oil product. We determined a formula of krill oil-in-water microemulsion with krill oil: isopropyl myristate = 1:3 as oil phase, Tween 80:Span 80 = 8:2 as surfactant, ethanol as co-surfactant and the mass ratio of surfactant to co-surfactant of 3:1. After screening the formula, we researched several characteristics of the prepared oil-in-water microemulsion, including electrical conductivity, microstructure by transmission electron microscope and cryogenic transmission electron microscope, droplet size analysis, rheological properties, thermal behavior by differential scanning calorimeter and stability against pH, salinity, and storage time.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiajin Zhu
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; (J.Z.); (K.J.); (Y.C.); (J.C.); (Y.Z.); (H.Y.)
| |
Collapse
|
13
|
Takeuchi E, Yamada D, Suzuki S, Saitoh A, Itoh M, Hayashi T, Yamada M, Wada K, Sekiguchi M. Participation of the nucleus accumbens dopaminergic system in the antidepressant-like actions of a diet rich in omega-3 polyunsaturated fatty acids. PLoS One 2020; 15:e0230647. [PMID: 32210469 PMCID: PMC7094879 DOI: 10.1371/journal.pone.0230647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
The beneficial effects of omega (ω)-3 polyunsaturated fatty acid (PUFA) supplementation on major depressive disorder have been actively studied, but the underlying mechanism remains unknown. The present study examined the involvement of the nucleus accumbens (NAc) dopaminergic systems in behavioral changes in mice fed a diet high in ω-3 PUFAs. Mice fed a diet containing about double the amount of ω-3 PUFAs (krill oil (KO) diet) exerted shorter immobility times in the forced swim test (FST) than mice fed a control diet, containing only α-linolenic acid (ALA) as ω-3 PUFAs. The shorter immobility times were observed in both male and female mice. A dopamine metabolite, 3,4-dihydroxyphenylacetic acid, increased in the NAc in male mice fed the KO diet when compared with those fed the control diet. In addition, dopamine, 3-methoxytyramine, and homovanillic acid increased in the NAc in female mice fed the KO diet. Notably, the effects of the KO diet on the immobility time in the FST were abolished by microinjection of sulpiride, an antagonist of D2-like receptors, into the NAc. A similar microinjection of an antagonist selective for D1-like receptors, SKF83566, also abolished the reduction in immobility in the FST. Moreover, we found that tyrosine hydroxylase-positive cells increased in the ventral tegmental area (VTA) in mice fed the KO diet. These results suggest that modulation of the VTA-NAc dopaminergic pathway is one of the mechanisms by which a KO diet rich in ω-3 PUFAs reduces the immobility behavior in the mouse FST.
Collapse
Affiliation(s)
- Eri Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Itoh
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hayashi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- * E-mail: ,
| |
Collapse
|
14
|
Joffre C, Dinel AL, Chataigner M, Pallet V, Layé S. n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients 2020; 12:nu12030647. [PMID: 32121189 PMCID: PMC7146513 DOI: 10.3390/nu12030647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.
Collapse
Affiliation(s)
- Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Correspondence:
| | - Anne-Laure Dinel
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Abyss Ingredients, 56850 Caudan, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| |
Collapse
|