2
|
Liu H, Chen P, Hu B, Wang S, Wang H, Luan J, Wang J, Lin B, Cheng M. FaissMolLib: An efficient and easy deployable tool for ligand-based virtual screening. Comput Biol Chem 2024; 110:108057. [PMID: 38581840 DOI: 10.1016/j.compbiolchem.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Virtual screening-based molecular similarity and fingerprint are crucial in drug design, target prediction, and ADMET prediction, aiding in identifying potential hits and optimizing lead compounds. However, challenges such as lack of comprehensive open-source molecular fingerprint databases and efficient search methods for virtual screening are prevalent. To address these issues, we introduce FaissMolLib, an open-source virtual screening tool that integrates 2.8 million compounds from ChEMBL and ZINC databases. Notably, FaissMolLib employs the highly efficient Faiss search algorithm, outperforming the Tanimoto algorithm in identifying similar molecules with its tighter clustering in scatter plots and lower mean, standard deviation, and variance in key molecular properties. This feature enables FaissMolLib to screen 2.8 million compounds in just 0.05 seconds, offering researchers an efficient, easily deployable solution for virtual screening on laptops and building unique compound databases. This significant advancement holds great potential for accelerating drug discovery efforts and enhancing chemical data analysis. FaissMolLib is freely available at http://liuhaihan.gnway.cc:80. The code and dataset of FaissMolLib are freely available at https://github.com/Superhaihan/FiassMolLib.
Collapse
Affiliation(s)
- Haihan Liu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Peiying Chen
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shizun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Manubens-Gil L, Zhou Z, Chen H, Ramanathan A, Liu X, Liu Y, Bria A, Gillette T, Ruan Z, Yang J, Radojević M, Zhao T, Cheng L, Qu L, Liu S, Bouchard KE, Gu L, Cai W, Ji S, Roysam B, Wang CW, Yu H, Sironi A, Iascone DM, Zhou J, Bas E, Conde-Sousa E, Aguiar P, Li X, Li Y, Nanda S, Wang Y, Muresan L, Fua P, Ye B, He HY, Staiger JF, Peter M, Cox DN, Simonneau M, Oberlaender M, Jefferis G, Ito K, Gonzalez-Bellido P, Kim J, Rubel E, Cline HT, Zeng H, Nern A, Chiang AS, Yao J, Roskams J, Livesey R, Stevens J, Liu T, Dang C, Guo Y, Zhong N, Tourassi G, Hill S, Hawrylycz M, Koch C, Meijering E, Ascoli GA, Peng H. BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets. Nat Methods 2023; 20:824-835. [PMID: 37069271 DOI: 10.1038/s41592-023-01848-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Zhi Zhou
- Microsoft Corporation, Redmond, WA, USA
| | | | - Arvind Ramanathan
- Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, USA
| | | | - Yufeng Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | | | - Todd Gillette
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Zongcai Ruan
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Jian Yang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | | | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Li Cheng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Qu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Anhui University, Hefei, China
| | | | - Kristofer E Bouchard
- Scientific Data Division and Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
- Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience, UC Berkeley, Berkeley, CA, USA
| | - Lin Gu
- RIKEN AIP, Tokyo, Japan
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Weidong Cai
- School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Shuiwang Ji
- Texas A&M University, College Station, TX, USA
| | - Badrinath Roysam
- Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hongchuan Yu
- National Centre for Computer Animation, Bournemouth University, Poole, UK
| | | | - Daniel Maxim Iascone
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL, USA
| | | | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Paulo Aguiar
- i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Xiang Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujie Li
- Allen Institute for Brain Science, Seattle, WA, USA
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Pascal Fua
- Computer Vision Laboratory, EPFL, Lausanne, Switzerland
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hai-Yan He
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August- University Göttingen, Goettingen, Germany
| | - Manuel Peter
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michel Simonneau
- 42 ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marcel Oberlaender
- Max Planck Group: In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Gregory Jefferis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Institute for Quantitative Biosciences, University of Tokyo, Tokyo, Japan
- Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | | | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Edwin Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Jane Roskams
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rick Livesey
- Zayed Centre for Rare Disease Research, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Janine Stevens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Chinh Dang
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Yike Guo
- Data Science Institute, Imperial College London, London, UK
| | - Ning Zhong
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
| | | | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia.
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, China.
| |
Collapse
|