1
|
Ruan H, Manrique DR, Winkelmann C, Haun J, Berberich G, Zimmer C, Koch K. Local effective connectivity changes after transcranial direct current stimulation in obsessive-compulsive disorder patients. J Affect Disord 2025; 374:116-127. [PMID: 39805500 DOI: 10.1016/j.jad.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
AIM This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD). METHODS In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA). Cathodal reference electrode was put on the left pre-SMA. The current was set as 2 mA, with a stimulation duration of either 30 s (sham) or 1200 s. Concurrent resting-state functional MRI data were collected following tDCS (or sham) stimulation. We employed regression dynamic causal modelling (rDCM) to extract whole brain effective connectivity (EC) matrices subsequently analyzing these matrices through graph theory approaches to examine changes in brain activity across different network scales. RESULTS We found that tDCS compared to sham caused significant changes in local effective connectivity. Increased recruitment level was detectable in the sensorimotor network (SMN), indicating enhanced intra-network connectivity after active tDCS. Clustering coefficient and local efficiency were also found to be increased in the same area. No significant changes were detectable with regard to global network connectivity. CONCLUSIONS Current findings indicate that single-session tDCS can effectively alter local effective connectivities within the SMN in OCD patients. Given the relevance of the SMN and connected regions for the pathophysiology of OCD we believe that tDCS targeting these areas might constitute an effective intervention to normalize altered network connectivity in the disorder of OCD. LIMITATION We used a single tDCS session, which may not reflect long-term effects.
Collapse
Affiliation(s)
- Hanyang Ruan
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.
| | - Daniela Rodriguez Manrique
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Chelsea Winkelmann
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Julian Haun
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Windach, Germany
| | - Claus Zimmer
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Prillinger K, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L, Radev ST. Multisession tDCS combined with intrastimulation training improves emotion recognition in adolescents with autism spectrum disorder. Neurotherapeutics 2024; 21:e00460. [PMID: 39393982 PMCID: PMC11585900 DOI: 10.1016/j.neurot.2024.e00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Previous studies indicate that transcranial direct current stimulation (tDCS) is a promising emerging treatment option for autism spectrum disorder (ASD) and its efficacy could be augmented using concurrent training. However, no intrastimulation social cognition training for ASD has been developed so far. The objective of this two-armed, double-blind, randomized, sham-controlled clinical trial is to investigate the effects of tDCS combined with a newly developed intrastimulation social cognition training on adolescents with ASD. Twenty-two male adolescents with ASD were randomly assigned to receive 10 sessions of either anodal or sham tDCS at F3/right supraorbital region together with online intrastimulation training comprising basic and complex emotion recognition tasks. Using baseline magnetic resonance imaging data, individual electric field distributions were simulated, and brain activation patterns of the training tasks were analyzed. Additionally, questionnaires were administered at baseline and following the intervention. Compared to sham tDCS, anodal tDCS significantly improved dynamic emotion recognition over the course of the sessions. This task also showed the highest activations in face processing regions. Moreover, the improvement was associated with electric field density at the medial prefrontal cortex and social awareness in exploratory analyses. Both groups showed high tolerability and acceptability of tDCS, and significant improvement in overall ASD symptoms. Taken together, multisession tDCS improved dynamic emotion recognition in adolescents with ASD using a task that activates brain regions associated with the social brain network. The variability in the electric field might diminish tDCS effects and future studies should investigate individualized approaches.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria.
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria
| | - Manfred Klöbl
- Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Rupert Lanzenberger
- Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul L Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria; Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, 89073 Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, University Hospital Heidelberg, 69115 Heidelberg, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Pediatrics (CCP), Medical University of Vienna, 1090 Vienna, Austria; Comprehensive Center for Clinical Neuroscience and Mental Health (C3NMH), Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan T Radev
- Cognitive Science Department, Rensselaer Polytechnic Institute, 12180 Troy, New York, USA; Center for Modeling, Simulation and Imaging in Medicine (CEMSIM), Rensselaer Polytechnic Institute, 12180 Troy, New York, USA
| |
Collapse
|
3
|
Hu C, Ti CHE, Yuan K, Chen C, Khan A, Shi X, Chu WCW, Tong RKY. Effects of high-definition tDCS targeting individual motor hotspot with EMG-driven robotic hand training on upper extremity motor function: a pilot randomized controlled trial. J Neuroeng Rehabil 2024; 21:169. [PMID: 39304930 PMCID: PMC11414071 DOI: 10.1186/s12984-024-01468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Delivering HD-tDCS on individual motor hotspot with optimal electric fields could overcome challenges of stroke heterogeneity, potentially facilitating neural activation and improving motor function for stroke survivors. However, the intervention effect of this personalized HD-tDCS has not been explored on post-stroke motor recovery. In this study, we aim to evaluate whether targeting individual motor hotspot with HD-tDCS followed by EMG-driven robotic hand training could further facilitate the upper extremity motor function for chronic stroke survivors. METHODS In this pilot randomized controlled trial, eighteen chronic stroke survivors were randomly allocated into two groups. The HDtDCS-group (n = 8) received personalized HD-tDCS using task-based fMRI to guide the stimulation on individual motor hotspot. The Sham-group (n = 10) received only sham stimulation. Both groups underwent 20 sessions of training, each session began with 20 min of HD-tDCS and was then followed by 60 min of robotic hand training. Clinical scales (Fugl-meyer Upper Extremity scale, FMAUE; Modified Ashworth Scale, MAS), and neuroimaging modalities (fMRI and EEG-EMG) were conducted before, after intervention, and at 6-month follow-up. Two-way repeated measures analysis of variance was used to compare the training effect between HDtDCS- and Sham-group. RESULTS HDtDCS-group demonstrated significantly better motor improvement than the Sham-group in terms of greater changes of FMAUE scores (F = 6.5, P = 0.004) and MASf (F = 3.6, P = 0.038) immediately and 6 months after the 20-session intervention. The task-based fMRI activation significantly shifted to the ipsilesional motor area in the HDtDCS-group, and this activation pattern increasingly concentrated on the motor hotspot being stimulated 6 months after training within the HDtDCS-group, whereas the increased activation is not sustainable in the Sham-group. The neuroimaging results indicate that neural plastic changes of the HDtDCS-group were guided specifically and sustained as an add-on effect of the stimulation. CONCLUSIONS Stimulating the individual motor hotspot before robotic hand training could further enhance brain activation in motor-related regions that promote better motor recovery for chronic stroke. TRIAL REGISTRATION This study was retrospectively registered in ClinicalTrials.gov (ID NCT05638464).
Collapse
Affiliation(s)
- Chengpeng Hu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Hang Eden Ti
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangqian Shi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Kim E, Yun SJ, Oh BM, Seo HG. Impact of Electric Field Magnitude in the Left Dorsolateral Prefrontal Cortex on Changes in Intrinsic Functional Connectivity Using Transcranial Direct Current Stimulation: A Randomized Crossover Study. J Neurosci Res 2024; 102:e25378. [PMID: 39225477 DOI: 10.1002/jnr.25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
This study investigated whether the electric field magnitude (E-field) delivered to the left dorsolateral prefrontal cortex (L-DLPFC) changes resting-state brain activity and the L-DLPFC resting-state functional connectivity (rsFC), given the variability in tDCS response and lack of understanding of how rsFC changes. Twenty-one healthy participants received either 2 mA anodal or sham tDCS targeting the L-DLPFC for 10 min. Brain imaging was conducted before and after stimulation. The fractional amplitude of low-frequency fluctuation (fALFF), reflecting resting brain activity, and the L-DLPFC rsFC were analyzed to investigate the main effect of tDCS, main effect of time, and interaction effects. The E-field was estimated by modeling tDCS-induced individual electric fields and correlated with fALFF and L-DLPFC rsFC. Anodal tDCS increased fALFF in the left rostral middle frontal area and decreased fALFF in the midline frontal area (FWE p < 0.050), whereas sham induced no changes. Overall rsFC decreased after sham (positive and negative connectivity, p = 0.001 and 0.020, respectively), with modest and nonsignificant changes after anodal tDCS (p = 0.063 and 0.069, respectively). No significant differences in local rsFC were observed among the conditions. Correlations were observed between the E-field and rsFC changes in the L-DLPFC (r = 0.385, p = 0.115), left inferior parietal area (r = 0.495, p = 0.037), and right lateral visual area (r = 0.683, p = 0.002). Single-session tDCS induced resting brain activity changes and may help maintain overall rsFC. The E-field in the L-DLPFC is associated with rsFC changes in both proximal and distally connected brain regions to the L-DLPFC.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Gomez-Tames J, Fernández-Corazza M. Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans. J Clin Med 2024; 13:3084. [PMID: 38892794 PMCID: PMC11172989 DOI: 10.3390/jcm13113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models. This review examines recent tES computational studies, providing a comprehensive background on the technical aspects of adopting computational electric field analysis as a standardized procedure in medical applications. Methods: Specific search strategies were designed to retrieve papers from the Web of Science database. The papers were initially screened based on the soundness of the title and abstract and then on their full contents, resulting in a total of 57 studies. Results: Recent trends were identified in individual- and population-level analysis of the electric field, including head models from non-neurotypical individuals. Advanced optimization techniques that allow a high degree of control with the required focality and direction of the electric field were also summarized. There is also growing evidence of a correlation between the computationally estimated electric field and the observed responses in real experiments. Conclusions: Computational pipelines and optimization algorithms have reached a degree of maturity that provides a rationale to improve tES experimental design and a posteriori analysis of the responses for supporting clinical studies.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Mariano Fernández-Corazza
- LEICI Institute of Research in Electronics, Control and Signal Processing, National University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
6
|
Wang Y, Ma Y, Zhong Q, Song B, Liu Q. Transcriptomic analysis of rat brain response to alternating current electrical stimulation: unveiling insights via single-nucleus RNA sequencing. MedComm (Beijing) 2024; 5:e514. [PMID: 38495123 PMCID: PMC10943177 DOI: 10.1002/mco2.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Electrical brain stimulation (EBS) has gained popularity for laboratory and clinical applications. However, comprehensive characterization of cellular diversity and gene expression changes induced by EBS remains limited, particularly with respect to specific brain regions and stimulation sites. Here, we presented the initial single-nucleus RNA sequencing profiles of rat cortex, hippocampus, and thalamus subjected to intracranial alternating current stimulation (iACS) at 40 Hz. The results demonstrated an increased number of neurons in all three regions in response to iACS. Interestingly, less than 0.1% of host gene expression in neurons was significantly altered by iACS. In addition, we identified Rgs9, a known negative regulator of dopaminergic signaling, as a unique downregulated gene in neurons. Unilateral iACS produced a more focused local effect in attenuating the proportion of Rgs9+ neurons in the ipsilateral compared to bilateral iACS treatment. The results suggested that unilateral iACS at 40 Hz was an efficient approach to increase the number of neurons and downregulate Rgs9 gene expression without affecting other cell types or genes in the brain. Our study presented the direct evidence that EBS could boost cerebral neurogenesis and enhance neuronal sensitization to dopaminergic drugs and agonists, through its downregulatory effect on Rgs9 in neurons.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yongchao Ma
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qiuling Zhong
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Bing Song
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qian Liu
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
7
|
Yoon MJ, Park HJ, Yoo YJ, Oh HM, Im S, Kim TW, Lim SH. Electric field simulation and appropriate electrode positioning for optimized transcranial direct current stimulation of stroke patients: an in Silico model. Sci Rep 2024; 14:2850. [PMID: 38310134 PMCID: PMC10838316 DOI: 10.1038/s41598-024-52874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has benefits for motor rehabilitation in stroke patients, but its clinical application is limited due to inter-individual heterogeneous effects. Recently, optimized tDCS that considers individual brain structure has been proposed, but the utility thereof has not been studied in detail. We explored whether optimized tDCS provides unique electrode positions for each patient and creates a higher target electric field than the conventional approach. A comparative within-subject simulation study was conducted using data collected for a randomized controlled study evaluating the effect of optimized tDCS on upper extremity function in stroke patients. Using Neurophet tES LAB 3.0 software, individual brain models were created based on magnetic resonance images and tDCS simulations were performed for each of the conventional and optimized configurations. A comparison of electrode positions between conventional tDCS and optimized tDCS was quantified by calculation of Euclidean distances. A total of 21 stroke patients were studied. Optimized tDCS produced a higher electric field in the hand motor region than conventional tDCS, with an average improvement of 20% and a maximum of 52%. The electrode montage for optimized tDCS was unique to each patient and exhibited various configurations that differed from electrode placement of conventional tDCS. Optimized tDCS afforded a higher electric field in the target of a stroke patient compared to conventional tDCS, which was made possible by appropriately positioning the electrodes. Our findings may encourage further trials on optimized tDCS for motor rehabilitation after stroke.
Collapse
Affiliation(s)
- Mi-Jeong Yoon
- Department of Rehabilitation Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Jungang-Ro 260, Yangpyeong-EupGyeongki-Do, Yangpyeong-Goon, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Jungang-Ro 260, Yangpyeong-EupGyeongki-Do, Yangpyeong-Goon, Republic of Korea.
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
- Institute for Basic Medical Science, Catholic Medical Center, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Kim T, Salazar Fajardo JC, Jang H, Lee J, Kim Y, Kim G, Kim D. Effect of optimized transcranial direct current stimulation on motor cortex activation in patients with sub-acute or chronic stroke: a study protocol for a single-blinded cross-over randomized control trial. Front Neurosci 2023; 17:1328727. [PMID: 38192515 PMCID: PMC10773722 DOI: 10.3389/fnins.2023.1328727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) has shown positive but inconsistent results in stroke rehabilitation. This could be attributed to inter-individual variations in brain characteristics and stroke lesions, which limit the use of a single tDCS protocol for all post-stroke patients. Optimizing the electrode location in tDCS for each individual using magnetic resonance imaging (MRI) to generate three-dimensional computer models and calculate the electric field (E-field) induced by tDCS at a specific target point in the primary motor cortex may help reduce these inconsistencies. In stroke rehabilitation, locating the optimal position that generates a high E-field in a target area can influence motor recovery. Therefore, this study was designed to determine the effect of personalized tDCS electrode positions on hand-knob activation in post-stroke patients. Method This is a crossover study with a sample size of 50 participants, who will be randomly assigned to one of six groups and will receive one session of either optimized-active, conventional-active, or sham tDCS, with 24 h between sessions. The tDCS parameters will be 1 mA (5 × 5 cm electrodes) for 20 min. The motor-evoked potential (MEP) will be recorded before and after each session over the target area (motor cortex hand-knob) and the MEP hotspot. The MEP amplitude at the target location will be the primary outcome. Discussion We hypothesize that the optimized-active tDCS session would show a greater increase in MEP amplitude over the target area in patients with subacute and chronic stroke than conventional and sham tDCS sessions.Clinical trial registration: https://cris.nih.go.kr, identifier KCT0007536.
Collapse
Affiliation(s)
- TaeYeong Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea
| | | | - Hanna Jang
- Research Institute, Neurophet Inc., Seoul, Republic of Korea
| | - Juwon Lee
- Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea
| | - Yeonkyung Kim
- Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea
| | - Gowun Kim
- Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea
| |
Collapse
|
9
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
10
|
Müller D, Habel U, Brodkin ES, Clemens B, Weidler C. HD-tDCS induced changes in resting-state functional connectivity: Insights from EF modeling. Brain Stimul 2023; 16:1722-1732. [PMID: 38008154 DOI: 10.1016/j.brs.2023.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND High-definition transcranial direct current stimulation (HD-tDCS) holds promise for therapeutic use in psychiatric disorders. One obstacle for the implementation into clinical practice is response variability. One way to tackle this obstacle is the use of Individualized head models. OBJECTIVE This study investigated the variability of HD-tDCS induced electric fields (EFs) and its impact on resting-state functional connectivity (rsFC) during different time windows. METHODS In this randomized, double-blind, and sham controlled study, seventy healthy males underwent 20 min of 1.5 mA HD-tDCS on the right inferior frontal gyrus (rIFG) while undergoing resting-state functional magnetic resonance imaging (rs-fMRI). Individual head models and EF simulations were created from anatomical images. The effects of HD-tDCS on rsFC were assessed using a seed-to-voxel analysis. A subgroup analysis explored the relationship between EF magnitude and rsFC during different stimulation time windows. RESULTS Results highlighted significant variability in HD-tDCS-induced EFs. Compared to the sham group, the active group showed increased rsFC between the rIFG and the left prefrontal cortex, during and after stimulation. During active stimulation, EF magnitude correlated positively with rsFC between the rIFG and the left hippocampus initially, and negatively during the subsequent period. CONCLUSION This study indicated an HD-tDCS induced increase of rsFC between left and right prefrontal areas. Furthermore, an interaction between the magnitude and the duration of HD-tDCS on rsFC was observed. Due to the high EF variability that was apparent, these findings highlight the need for individualized HD-tDCS protocols and the creation of head models to optimize effects and reduce response heterogeneity.
Collapse
Affiliation(s)
- Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany; JARA-BRAIN Institute Brain Structure-Function Relationships, Research Center Jülich and RWTH Aachen, Germany; Institute of Neuroscience and Medicine 10, Research Center Jülich, 52438, Jülich, Germany
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Suite 3080, Philadelphia, PA, 19104-3309, USA
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
11
|
Soleimani G, Kupliki R, Paulus M, Ekhtiari H. Dose-response in modulating brain function with transcranial direct current stimulation: From local to network levels. PLoS Comput Biol 2023; 19:e1011572. [PMID: 37883583 PMCID: PMC10629666 DOI: 10.1371/journal.pcbi.1011572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/07/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Understanding the dose-response relationship is crucial in studying the effects of brain stimulation techniques, such as transcranial direct current stimulation (tDCS). The dose-response relationship refers to the relationship between the received stimulation dose and the resulting response, which can be described as a function of the dose at various levels, including single/multiple neurons, clusters, regions, or networks. Here, we are focused on the received stimulation dose obtained from computational head models and brain responses which are quantified by functional magnetic resonance imaging (fMRI) data. In this randomized, triple-blind, sham-controlled clinical trial, we recruited sixty participants with methamphetamine use disorders (MUDs) as a sample clinical population who were randomly assigned to receive either sham or active tDCS. Structural and functional MRI data, including high-resolution T1 and T2-weighted MRI, resting-state functional MRI, and a methamphetamine cue-reactivity task fMRI, were acquired before and after tDCS. Individual head models were generated using the T1 and T2-weighted MRI data to simulate electric fields. In a linear approach, we investigated the associations between electric fields (received dose) and changes in brain function (response) at four different levels: voxel level, regional level (using atlas-based parcellation), cluster level (identifying active clusters), and network level (task-based functional connectivity). At the voxel level, regional level, and cluster level, no FDR-corrected significant correlation was observed between changes in functional activity and electric fields. However, at the network level, a significant positive correlation was found between frontoparietal connectivity and the electric field at the frontopolar stimulation site (r = 0.42, p corrected = 0.02; medium effect size). Our proposed pipeline offers a methodological framework for analyzing tDCS effects by exploring dose-response relationships at different levels, enabling a direct link between electric field variability and the neural response to tDCS. The results indicate that network-based analysis provides valuable insights into the dependency of tDCS neuromodulatory effects on the individual's regional current dose. Integration of dose-response relationships can inform dose optimization, customization, or the extraction of predictive/treatment-response biomarkers in future brain stimulation studies.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| | - Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| |
Collapse
|