1
|
Antoniou C, Loreto A, Gilley J, Merlini E, Orsomando G, Coleman MP. Chronically Low NMNAT2 Expression Causes Sub-lethal SARM1 Activation and Altered Response to Nicotinamide Riboside in Axons. Mol Neurobiol 2025; 62:3903-3917. [PMID: 39352636 PMCID: PMC11790816 DOI: 10.1007/s12035-024-04480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 02/04/2025]
Abstract
Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an endogenous axon survival factor that maintains axon health by blocking activation of the downstream pro-degenerative protein SARM1 (sterile alpha and TIR motif containing protein 1). While complete absence of NMNAT2 in mice results in extensive axon truncation and perinatal lethality, the removal of SARM1 completely rescues these phenotypes. Reduced levels of NMNAT2 can be compatible with life; however, they compromise axon development and survival. Mice born expressing sub-heterozygous levels of NMNAT2 remain overtly normal into old age but develop axonal defects in vivo and in vitro as well as behavioural phenotypes. Therefore, it is important to examine the effects of constitutively low NMNAT2 expression on SARM1 activation and disease susceptibility. Here we demonstrate that chronically low NMNAT2 levels reduce prenatal viability in mice in a SARM1-dependent manner and lead to sub-lethal SARM1 activation in morphologically intact axons of superior cervical ganglion (SCG) primary cultures. This is characterised by a depletion in NAD(P) and compromised neurite outgrowth. We also show that chronically low NMNAT2 expression reverses the NAD-enhancing effect of nicotinamide riboside (NR) in axons in a SARM1-dependent manner. These data indicate that low NMNAT2 levels can trigger sub-lethal SARM1 activation which is detectable at the molecular level and could predispose to human axonal disorders.
Collapse
Affiliation(s)
- Christina Antoniou
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Andrea Loreto
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Gilley
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Elisa Merlini
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
2
|
Lewandowska MA, Różycka A, Grzelak T, Kempisty B, Jagodziński PP, Lianeri M, Dorszewska J. Expression of Neuronal Nicotinic Acetylcholine Receptor and Early Oxidative DNA Damage in Aging Rat Brain-The Effects of Memantine. Int J Mol Sci 2025; 26:1634. [PMID: 40004097 PMCID: PMC11855568 DOI: 10.3390/ijms26041634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Aging and age-related neurodegenerative disorders are characterized by the dysfunction or loss of brain nicotinic acetylcholine receptors (nAChRs), and these changes may be related to other senescence markers, such as oxidative stress and DNA repair dysfunction. However, the mechanism of nAChR loss in the aging brain and the modification of this process by drugs (e.g., memantine, Mem) are not yet fully understood. To study whether the differences in nAChR expression in the rat brain occur due to aging or oxidative stress and are modulated by Mem, we analyzed nAChR subunits (at RNA and protein levels) and other biomarkers by real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot validation. Twenty-one female Wistar rats were divided into four groups, depending on age, and the oldest group received injections of Mem or water with the use of intragastric catheters. We studied the cerebral grey matter (CGM), subcortical white matter (SCWM), and cerebellum (Ce). Results showed an age-related decrease of α7 nAChR mRNA level in SCWM. The α7 nAChR mRNA loss was accompanied by reduced expression of 8-oxoguanine DNA glycosylase 1 (OGG1) and an increased tumor necrosis factor alpha (TNFα) level. In the water group, we observed a higher level of α7 nAChR protein in the SCWM and Ce. Biomarker levels changed, but to a different extent depending on the brain area. Importantly, the dysfunction in antioxidative status was stopped and even regressed under Mem treatment. After two weeks of treatment, an increase in TP53 protein level and a decrease in 8-oxo-2'deoxyguanosine (8-oxo-2'dG) level were observed. We conclude that Mem administration may be protective against the senescence process by antioxidative mechanisms.
Collapse
Affiliation(s)
- Małgorzata Anna Lewandowska
- Faculty of Medicine, Poznan Medical University, 55 Bulgarska St., 60-320 Poznan, Poland;
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Świecickiego St., 60-781 Poznan, Poland; (P.P.J.); (M.L.)
| | - Agata Różycka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Świecickiego St., 60-781 Poznan, Poland; (P.P.J.); (M.L.)
| | - Teresa Grzelak
- Department of Physiology, Poznan University of Medical Sciences, 6 Świecickiego St., 60-781 Poznan, Poland
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wrocław Medical University, 50-368 Wroclaw, Poland;
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 625 00 Brno, Czech Republic
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Świecickiego St., 60-781 Poznan, Poland; (P.P.J.); (M.L.)
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Świecickiego St., 60-781 Poznan, Poland; (P.P.J.); (M.L.)
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| |
Collapse
|
3
|
Liu X, Zhao Y, Feng Y, Wang S, Luo A, Zhang J. Ovarian Aging: The Silent Catalyst of Age-Related Disorders in Female Body. Aging Dis 2025:AD.2024.1468. [PMID: 39965250 DOI: 10.14336/ad.2024.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Age-related diseases have emerged as a global concern as the population ages. Consequently, understanding the underlying causes of aging and exploring potential anti-aging interventions is imperative. In females, the ovaries serve as the principal organs responsible for ovulation and the production of female hormones. The aging ovaries are related to infertility, menopause, and associated menopausal syndromes, with menopause representing the culmination of ovarian aging. Current evidence indicates that ovarian aging may contribute to dysfunction across multiple organ systems, including, but not limited to, cognitive impairment, osteoporosis, and cardiovascular disease. Nevertheless, due to the widespread distribution of sex hormone receptors throughout the body, ovarian aging affects not only these specific organs but also influences a broader spectrum of age-related diseases in women. Despite this, the impact of ovarian aging on overall age-related diseases has been largely neglected. This review provides a thorough summary of the impact of ovarian aging on age-related diseases, encompassing the nervous, circulatory, locomotor, urinary, digestive, respiratory, and endocrine systems. Additionally, we have outlined prospective therapeutic approaches for addressing both ovarian aging and age-related diseases, with the aim of mitigating their impacts and preserving women's fertility, physical health, and psychological well-being.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanqu Zhao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
4
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
5
|
Høyland LE, VanLinden MR, Niere M, Strømland Ø, Sharma S, Dietze J, Tolås I, Lucena E, Bifulco E, Sverkeli LJ, Cimadamore-Werthein C, Ashrafi H, Haukanes KF, van der Hoeven B, Dölle C, Davidsen C, Pettersen IKN, Tronstad KJ, Mjøs SA, Hayat F, Makarov MV, Migaud ME, Heiland I, Ziegler M. Subcellular NAD + pools are interconnected and buffered by mitochondrial NAD . Nat Metab 2024; 6:2319-2337. [PMID: 39702414 DOI: 10.1038/s42255-024-01174-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/05/2024] [Indexed: 12/21/2024]
Abstract
The coenzyme NAD+ is consumed by signalling enzymes, including poly-ADP-ribosyltransferases (PARPs) and sirtuins. Ageing is associated with a decrease in cellular NAD+ levels, but how cells cope with persistently decreased NAD+ concentrations is unclear. Here, we show that subcellular NAD+ pools are interconnected, with mitochondria acting as a rheostat to maintain NAD+ levels upon excessive consumption. To evoke chronic, compartment-specific overconsumption of NAD+, we engineered cell lines stably expressing PARP activity in mitochondria, the cytosol, endoplasmic reticulum or peroxisomes, resulting in a decline of cellular NAD+ concentrations by up to 50%. Isotope-tracer flux measurements and mathematical modelling show that the lowered NAD+ concentration kinetically restricts NAD+ consumption to maintain a balance with the NAD+ biosynthesis rate, which remains unchanged. Chronic NAD+ deficiency is well tolerated unless mitochondria are directly targeted. Mitochondria maintain NAD+ by import through SLC25A51 and reversibly cleave NAD+ to nicotinamide mononucleotide and ATP when NMNAT3 is present. Thus, these organelles can maintain an additional, virtual NAD+ pool. Our results are consistent with a well-tolerated ageing-related NAD+ decline as long as the vulnerable mitochondrial pool is not directly affected.
Collapse
Affiliation(s)
- Lena E Høyland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Marc Niere
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Suraj Sharma
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jörn Dietze
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Tolås
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, NTNU Ålesund, Ålesund, Norway
| | - Eva Lucena
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ersilia Bifulco
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Lars J Sverkeli
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Camila Cimadamore-Werthein
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hanan Ashrafi
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Christian Dölle
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Cédric Davidsen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Svein A Mjøs
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ines Heiland
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Ma Y, Nong W, Zhong O, Liu K, Lei S, Wang C, Chen X, Lei X. Nicotinamide mononucleotide improves the ovarian reserve of POI by inhibiting NLRP3-mediated pyroptosis of ovarian granulosa cells. J Ovarian Res 2024; 17:236. [PMID: 39593096 PMCID: PMC11590476 DOI: 10.1186/s13048-024-01534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common clinical problem, but there is currently no effective treatment. NLRP3 inflammasome-induced pyroptosis is thought to be a possible mechanism of POI. Nicotinamide mononucleotide (NMN) has a certain anti-inflammatory effect, providing a promising approach for the treatment of POI. METHODS Thirty female Sprague Dawley rats were randomly divided into a control group (n = 10) and a POI group (n = 20). Cyclophosphamide (CTX) was administered for 2 weeks to induce POI. Then the POI group was divided into two groups: the CTX-POI group (n = 10), which was given saline; and the CTX-POI + NMN group (n = 10), which was given NMN at a dose of 500 mg/kg/day for 21 consecutive days. At the end of the study, the serum hormone concentrations of each group were determined, and each group was subjected to biochemical, histopathological, and immunohistochemical analyses. In the in vitro experiment, cell pyroptosis was simulated by using lipopolysaccharide (LPS) and nigricin (Nig), and then KGN cells were treated with NMN, MCC950, and AGK2, and the levels of Nicotinamide adenine dinucleotide (NAD+) and inflammatory factors Interleukin-18(IL-18) and Interleukin-1β(IL-1β) in the cell supernatants were detected, and the levels of pyroptosis-related factors in the cells were determined. RESULTS In POI rats, NMN treatments can improve blood hormone levels and partially improve the number of follicles, enhance ovarian reserve function and ovarian index.The evidence is that the increase in NAD+ levels and the activation of SIRT2 expression can reduce the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, IL-18, and IL-1β in the ovary. CONCLUSION NMN improves CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, providing a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Department of Reproductive Medicine Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ou Zhong
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Siyuan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Chen Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China.
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Zhang Y, Chen Z, Ye A, Chen P, Wu A, Andriniaina EA, You L, Xiao D. Preparation of a multiple interacting magnetic fluid for rapid and sensitive simultaneous extraction of β-nicotinamide mononucleotide metabolites in biological samples. Anal Chim Acta 2024; 1325:343074. [PMID: 39244299 DOI: 10.1016/j.aca.2024.343074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND β-nicotinamide mononucleotide stands out as an essential breakthrough in "anti-aging" and consistently leads the list of top-selling nutritional supplements in terms of quantity. As the metabolites of β-nicotinamide mononucleotide, the detection of nicotinamide and N1-methylnicotinamide is of great significance for evaluating the nutritional effect of dietary supplements of β-nicotinamide mononucleotide. However, due to the extremely low concentration of nicotinamide and N1-methylnicotinamide in vivo and the serious matrix interference in biological samples, there is an increasing demand for materials and methods of pre-treatment. RESULTS In this study, Fe3O4@hydroxypropyl methyl cellulose@dodecylbenzenesulfonic acid magnetic fluid was synthesized for the first time, and it was used as pretreatment material to detect nicotinamide and N1- methylnicotinamide in urine samples by high performance liquid chromatography. Compared with other adsorption materials, Fe3O4@hydroxypropyl methyl cellulose@dodecylbenzenesulfonic acid nanoparticles are a kind of uniform magnetic fluid. Furthermore, they have more types and quantities of interaction sites (electrostatic interactions, hydrophobic interactions, hydrogen bonding interactions, and π-π interactions), so they own greater adsorption capacity. When the pH of the solution is 4, they can be adsorbed quickly within 10 s. The method successfully detected trace nicotinamide and N1-methylnicotinamide in urine samples in the linear range of 0.1-80 μg mL-1, the low detection limits were 0.30 ng mL-1 and 1.5 ng mL-1 respectively, and the quantification limits were 1.0 ng mL-1 and 5.0 ng mL-1, respectively. At the same time, the standard urine samples of nicotinamide and N1-methylnicotinamide showed satisfactory recovery rate 94.50-109.1 %. The results indicated that the established method can accurately and quantitatively determine trace nicotinamide and N1-methylnicotinamide in urine samples. SIGNIFICANCE Consequently, low concentration of β-nicotinamide mononucleotide metabolites can be detected simultaneously, and the interference can be eliminated during the detection process, which provides an efficient and convenient pretreatment method and a rapid and sensitive detection method for the analysis of β-nicotinamide mononucleotide metabolites. What's more, it has a wide application prospect in the analysis of other similar metabolites in biological samples.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Aoli Ye
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Pei Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Anqi Wu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Eric Abdon Andriniaina
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China.
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing, 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Loreto A, Merlini E, Coleman MP. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye (Lond) 2024; 38:1802-1809. [PMID: 38538779 PMCID: PMC11226669 DOI: 10.1038/s41433-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 07/07/2024] Open
Abstract
Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
10
|
Miyamoto T, Kim C, Chow J, Dugas JC, DeGroot J, Bagdasarian AL, Thottumkara AP, Larhammar M, Calvert ME, Fox BM, Lewcock JW, Kane LA. SARM1 is responsible for calpain-dependent dendrite degeneration in mouse hippocampal neurons. J Biol Chem 2024; 300:105630. [PMID: 38199568 PMCID: PMC10862016 DOI: 10.1016/j.jbc.2024.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.
Collapse
Affiliation(s)
| | - Chaeyoung Kim
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Johann Chow
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Jason C Dugas
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Jack DeGroot
- Denali Therapeutics Inc, South San Francisco, California, USA
| | | | | | | | | | - Brian M Fox
- Denali Therapeutics Inc, South San Francisco, California, USA
| | | | - Lesley A Kane
- Denali Therapeutics Inc, South San Francisco, California, USA.
| |
Collapse
|
11
|
Chiarugi A. Glaucoma: neuroprotection with NAD-based therapeutic interventions. Trends Pharmacol Sci 2023; 44:869-879. [PMID: 37880000 DOI: 10.1016/j.tips.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Clinical evidence shows that intraocular hypertension is not the primary pathogenetic event of glaucoma, whereas early neurodegeneration of retinal ganglion cells (RGCs) represents a key therapeutic target. Unfortunately, failure of clinical trials with neuroprotective agents, in particular those testing the anti-excitotoxic drug memantine, generated widespread skepticism regarding the possibility of counteracting neurodegeneration during glaucoma. New avenues for neuroprotective approaches to counteract glaucoma evolution have been opened by the identification of a programmed axonal degeneration (PAD) program triggered by increased nicotinamide mononucleotide (NMN)/NAD concentration ratio. Positive results of proof-of-concept clinical studies based on sustaining axonal NAD homeostasis facilitated the design of Phase 2/3 trials. Here, I share my opinion on how neurodegeneration in glaucoma should be put into context, together with an appraisal of the pharmacological rationale of NAD-supporting therapies for use during glaucoma progression.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy; Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
12
|
Otsuki M, Terenzio M. Mechanisms of axonal degeneration and regeneration of the nervous system. Neurosci Res 2023; 197:1-2. [PMID: 37839523 DOI: 10.1016/j.neures.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0412, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0412, Japan.
| |
Collapse
|
13
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|