1
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
2
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Islam MA, Amin SMN, Brown CL, Juraimi AS, Uddin MK, Arshad A. Determination of Median Lethal Concentration (LC 50) for Endosulfan, Heptachlor and Dieldrin Pesticides to African Catfish, Clarias gariepinus and Their Impact on Its Behavioral Patterns and Histopathological Responses. TOXICS 2021; 9:340. [PMID: 34941774 PMCID: PMC8703865 DOI: 10.3390/toxics9120340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Pesticides such as endosulfan, heptachlor and dieldrin persist in aquatic environments as a result of their resistance to biodegradation. However, there is no adequate information about the toxicity of endosulfan, heptachlor and dieldrin to the aquatic organism, African catfish (Clarias gariepinus)-a high valued widely distributed commercially interesting species. The current experiment was performed with the aim to determine the median lethal concentration (LC50) of endosulfan, heptachlor and dieldrin to African catfish (Clarias gariepinus); their behavioral abnormalities and histopathological alterations in several vital organs. A total of 324 juvenile fish were exposed for 96 h to six concentrations of endosulfan and dieldrin at 0, 0.001, 0.002, 0.004, 0.008 and 0.016 ppm, and to heptachlor at concentrations of 0, 0.02, 0.04, 0.08, 0.16 and 0.32 ppm for dose-response tests. The study demonstrated that the species is highly susceptible to those contaminants showing a number of behavioral abnormalities and histopathological changes in gill, liver and muscle. The 96-h LC50 value of endosulfan, dieldrin and heptachlor for the African catfish was found as 0.004 (0.001-0.01) mg/L, 0.006 mg/L and 0.056 (0.006-0.144) mg/L, respectively. Abnormal behaviors such as erratic jerky swimming, frequent surfacing movement with gulping of air, secretion of mucus on the body and gills were observed in response to the increasing exposure concentrations. Histopathological alterations of liver, gill and muscle tissues were demonstrated as vacuolization in hepatocytes, congestion of red blood cells (RBCs) in hepatic portal vein; deformed secondary lamellae and disintegrated myotomes with disintegrated epidermis, respectively. These findings are important to monitor and responsibly manage pesticide use in and around C. gariepinus aquacultural areas.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (M.A.I.); (S.M.N.A.)
- Shrimp Research Station, Bangladesh Fisheries Research Institute (BFRI), Bagerhat 9300, Bangladesh
| | - S. M. Nurul Amin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (M.A.I.); (S.M.N.A.)
- Department of Aquaculture, FAO World Fisheries University, Busan 48547, Korea;
| | | | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Md. Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (M.A.I.); (S.M.N.A.)
| |
Collapse
|
4
|
Loughery JR, Crowley E, Kidd KA, Martyniuk CJ. Behavioral and hypothalamic transcriptome analyses reveal sex-specific responses to phenanthrene exposure in the fathead minnow (Pimephales promelas). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100905. [PMID: 34500131 DOI: 10.1016/j.cbd.2021.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/19/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Environmental concentrations of the polycyclic aromatic hydrocarbon phenanthrene can become elevated with petroleum processing, industrial activities, and urban run-off into waterbodies. However, mechanisms related to its neurotoxicity in fish are not fully described. Here, we exposed adult fathead minnows (FHM) to an average measured concentration of 202 μg phenanthrene/L over a 47-d period. Behaviors of male and female FHM were assessed using a novel aquarium test. Phenanthrene exposed females displayed equilibrium loss, while phenanthrene exposed males spent less time in the aquarium bottom, suggesting phenanthrene reduced anxiety-related behavior. To elucidate putative mechanisms underlying behaviors, we determined the hypothalamic transcriptome profile, a critical integration centre for the regulation of behaviors. There were 1075 hypothalamic transcripts differentially expressed between males and females (sex-specific) while 15 transcripts were phenanthrene-specific. Thus, sex of the animal was more pervasive at influencing the transcriptome compared to phenanthrene and this may partially explain the divergent behavioral responses between sexes. Transcripts altered by phenanthrene included palmitoylated 3 membrane protein, plectin 1,ATP synthase membrane subunit c, and mitochondrial ribosomal protein S11. Gene set enrichment analysis revealed less than 5% of the gene networks perturbed by phenanthrene were shared between males and females, thus phenanthrene altered the hypothalamic transcriptome in a sex-specific manner. Gene networks shared between both sexes and associated with phenanthrene-induced neurotoxicity included processes related to mitochondrial respiratory chain dysfunction, epinephrine/norepinephrine release, and glutamate biosynthesis pathways. Such energy deficits and neurotransmitter disruptions are hypothesized to lead to behavioral deficits in fish. This study provides mechanistic insights into phenanthrene-induced neurotoxicity and how it may relate to changes in fish behaviors.
Collapse
Affiliation(s)
- Jennifer R Loughery
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - E Crowley
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Karen A Kidd
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
5
|
Laino A, Romero S, Cunningham M, Molina G, Gabellone C, Trabalon M, Garcia CF. Can Wolf Spider Mothers Detect Insecticides in the Environment? Does the Silk of the Egg-Sac Protect Juveniles from Insecticides? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2861-2873. [PMID: 34314524 DOI: 10.1002/etc.5157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides for plague control in agroecosystems generates a threat to wildlife and a major problem for human health. Pesticide compounds are also an important source of water and atmosphere contamination. Although insecticides are effective on their target organisms, they often affect organisms that are not their target. The aim of the present study was to research the effects of 3 types of neurotoxic insecticides-a pyrethroid (cypermethrin), a neonicotinoid (imidacloprid), and an organophosphate (chlorpyrifos)-on behavioral and physiological parameters of Pardosa saltans spider (Lycosidae). Our study analyzed for the first time the exploratory behavior of the spider mothers in the presence of these 3 insecticides on their egg-sacs and also on the ground. We also evaluated the oxidative stress effects on the juveniles hatched in the egg-sac protected by silk in relation to variations in detoxification enzymes (catalase, glutathione reductase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) and lipid peroxidation (reactive oxygen species [ROS]). The results show that these insecticides are repellents for mothers (cypermethrin is the most repellent), and maternal behavior is modified after detection of an insecticide on their egg-sac but mothers do not abandon their egg-sacs. These neurotoxic insecticides affect the juveniles inside their egg-sac. Cypermethrin and chlorpyrifos caused more oxidative stress in juveniles than did imidacloprid. The ROS generated by these insecticides seemed to be adequately eliminated by the juveniles' antioxidant systems. Environ Toxicol Chem 2021;40:2861-2873. © 2021 SETAC.
Collapse
Affiliation(s)
- A Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - S Romero
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - M Cunningham
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - G Molina
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - C Gabellone
- Centro de Estudios Parasitológicos y Vectores, La Plata, Argentina
| | - M Trabalon
- Université de Rennes 1, CNRS, EthoS-UMR 6552, Rennes, France
| | - C F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| |
Collapse
|
6
|
Russo M, Humes ST, Figueroa AM, Tagmount A, Zhang P, Loguinov A, Lednicky JA, Sabo-Attwood T, Vulpe CD, Liu B. Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression. Toxicol Sci 2021; 182:260-274. [PMID: 34051100 DOI: 10.1093/toxsci/kfab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Ping Zhang
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Chris D Vulpe
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Souders CL, Wei C, Schmidt JT, Da Fonte DF, Xing L, Trudeau VL, Martyniuk CJ. Mitochondria of teleost radial glia: A novel target of neuroendocrine disruption by environmental chemicals? Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108995. [PMID: 33545344 DOI: 10.1016/j.cbpc.2021.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022]
Abstract
In teleost fish, radial glial cells (RGCs) are progenitor cells for neurons and the major cell type synthesizing neuroestrogens. We hypothesized that chemical exposure impairs mitochondrial bioenergetics of RGCs, which then may lead to downstream consequences for neuroestrogen production. Here we provide proof of concept that mitochondria of RGCs can be perturbed by fungicides. We isolated RGCs from a mixed sex population of goldfish (Carassius auratus) and measured metabolic capacity of primary cells to a model mitotoxin fluazinam, a broad-spectrum fungicide that inhibits mitochondria electron transport chain (or ETC) Complex I. Using immunocytochemistry and real-time PCR, we demonstrate that the goldfish primary cell cultures are highly enriched for glia after multiple passages. Cytotoxicity assays revealed that glia treated with >25 μM fluazinam for 24 and 48-h showed reduced viability. As such, metabolic assays were conducted with non-cytotoxic concentrations (0.25-12.5 μM). Fluazinam did not affect oxygen consumption rates of RGCs at 24 h, but after 48 h, oligomycin induced ATP-linked respiration was decreased by both 6.25 and 12.5 μM fluazinam. Moreover, concentrations as low as 0.25 μM disrupted the mitochondrial membrane potential of RGCs, reflecting strong uncoupling effects of the fungicide on mitochondria. Here we provide proof of concept that mitochondrial bioenergetics of teleostean RGCs can be responsive to agrochemicals. Additional studies are required to address low-dose exposures in vivo and to determine if metabolic disruption impairs neuroendocrine functions of RGCs. We propose this mechanism constitutes a novel aspect of neuroendocrine disruption, significant because dysregulation of neuron-glia communication is expected to contribute to neuroendocrine disruption.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Chi Wei
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jordan T Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Dillon F Da Fonte
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Lei Xing
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Hua Q, Adamovsky O, Vespalcova H, Boyda J, Schmidt JT, Kozuch M, Craft SLM, Ginn PE, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115715. [PMID: 33069042 DOI: 10.1016/j.envpol.2020.115715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.
Collapse
Affiliation(s)
- Qing Hua
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Hana Vespalcova
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Jonna Boyda
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Jordan T Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Serena L M Craft
- University of Florida, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, Gainesville, USA
| | - Pamela E Ginn
- University of Florida, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, Gainesville, USA
| | - Stanislav Smatana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic; Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, Brno, Czech Republic
| | - Eva Budinska
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Maria Persico
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental & Global Health and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; University of Florida Genetics Institute and Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Dietary Supplementation of Astaxanthin Improved the Growth Performance, Antioxidant Ability and Immune Response of Juvenile Largemouth Bass ( Micropterus salmoides) Fed High-Fat Diet. Mar Drugs 2020; 18:md18120642. [PMID: 33333811 PMCID: PMC7765211 DOI: 10.3390/md18120642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) usually induces oxidative stress and astaxanthin is regarded as an excellent anti-oxidant. An 8-week feeding trial was conducted to investigate the effects of dietary astaxanthin supplementation on growth performance, lipid metabolism, antioxidant ability, and immune response of juvenile largemouth bass (Micropterus salmoides) fed HFD. Four diets were formulated: the control diet (10.87% lipid, C), high-fat diet (18.08% lipid, HF), and HF diet supplemented with 75 and 150 mg kg-1 astaxanthin (HFA1 and HFA2, respectively). Dietary supplementation of astaxanthin improved the growth of fish fed HFD, also decreased hepatosomatic index and intraperitoneal fat ratio of fish fed HFD, while having no effect on body fat. Malondialdehyde content and superoxide dismutase activity were increased in fish fed HFD, astaxanthin supplementation in HFD decreased the oxidative stress of fish. The supplementation of astaxanthin in HFD also reduced the mRNA levels of Caspase 3, Caspase 9, BAD, and IL15. These results suggested that dietary astaxanthin supplementation in HFD improved the growth performance, antioxidant ability and immune response of largemouth bass.
Collapse
|
10
|
Magnuson JT, Cryder Z, Andrzejczyk NE, Harraka G, Wolf DC, Gan J, Schlenk D. Metabolomic Profiles in the Brains of Juvenile Steelhead ( Oncorhynchus mykiss) Following Bifenthrin Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12245-12253. [PMID: 32900186 DOI: 10.1021/acs.est.0c04847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pyrethroid insecticide, bifenthrin, is frequently measured at concentrations exceeding those that induce acute and chronic toxicity to several invertebrate and fish species residing in the Sacramento-San Joaquin Delta of California. Since the brain is considered to be a significant target for bifenthrin toxicity, juvenile steelhead trout (Oncorhynchus mykiss) were treated with concentrations of bifenthrin found prior to (60 ng/L) and following (120 ng/L) major stormwater runoff events with nontargeted metabolomics used to target transcriptomic alterations in steelhead brains following exposure. Predicted responses were involved in cellular apoptosis and necrosis in steelhead treated with 60 ng/L bifenthrin using the software Ingenuity Pathway Analysis. These responses were predominately driven by decreased levels of acetyl-l-carnitine (ALC), docosahexaenoic acid (DHA), and adenine. Steelhead treated with 120 ng/L bifenthrin had reductions of lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), and increased levels of betaine, which were predicted to induce an inflammatory response. Several genes predicted to be involved in apoptotic (caspase3 and nrf2) and inflammatory (miox) pathways had altered expression following exposure to bifenthrin. There was a significantly increased expression of caspase3 and miox in fish treated with 120 ng/L bifenthrin with a significant reduction of nrf2 in fish treated with 60 ng/L bifenthrin. These data indicate that bifenthrin may have multiple targets within the brain that affect general neuron viability, function, and signaling potentially through alterations in signaling fatty acids.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Zachary Cryder
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Nicolette E Andrzejczyk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Gary Harraka
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Douglas C Wolf
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Cook D. A Historical Review of Management Options Used against the Stable Fly (Diptera: Muscidae). INSECTS 2020; 11:E313. [PMID: 32429109 PMCID: PMC7290918 DOI: 10.3390/insects11050313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022]
Abstract
The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), remains a significant economic pest globally in situations where intensive animal production or horticultural production provide a suitable developmental medium. Stable flies have been recorded as pests of livestock and humans since the late 1800s to early 1900s. Over 100 years of research has seen numerous methodologies used to control this fly, in particular to protect cattle from flies to minimise production losses. Reduced milk production in dairy cows and decreased weight gain in beef cattle account for losses in the US alone of > $2000 million annually. Rural lifestyles and recreation are also seriously affected. Progress has been made on many control strategies against stable fly over a range of chemical, biological, physical and cultural options. This paper reviews management options from both a historical and a technical perspective for controlling this pest. These include the use of different classes of insecticides applied to affected animals as toxicants or repellents (livestock and humans), as well as to substrates where stable fly larvae develop. Arthropod predators of stable flies are listed, from which potential biological control agents (e.g., wasps, mites, and beetles) are identified. Biopesticides (e.g., fungi, bacteria and plant-derived products) are also discussed along with Integrated Pest Management (IPM) against stable flies for several animal industries. A review of cultural and physical management options including trapping, trap types and methodologies, farm hygiene, scheduled sanitation, physical barriers to fly emergence, livestock protection and amendments added to animal manures and bedding are covered. This paper presents a comprehensive review of all management options used against stable flies from both a historical and a technical perspective for use by any entomologist, livestock producer or horticulturalist with an interest in reducing the negative impact of this pest fly.
Collapse
Affiliation(s)
- David Cook
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
| |
Collapse
|
12
|
Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 2020; 507:110764. [PMID: 32112812 PMCID: PMC10603819 DOI: 10.1016/j.mce.2020.110764] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, CA, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
13
|
Ma D, Fan J, Tian Y, Jiang P, Wang J, Zhu H, Bai J. Selection of reference genes for quantitative real-time PCR normalisation in largemouth bass Micropterus salmoides fed on alternative diets. JOURNAL OF FISH BIOLOGY 2019; 95:393-400. [PMID: 31017661 DOI: 10.1111/jfb.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
The partial cDNA sequences of eight reference genes (actb, tuba1, gapdh58, gapdh59, eef1a1, RNA 18 s, pabpc1, ube2I) were cloned from largemouth bass Micropterus salmoides. The expression levels of these eight genes were compared in the various tissues (eye, spleen, kidney, gill, muscle, brain, liver, heart, gut and gonad) of M. salmoides fed on forage fish. The results showed that the candidate genes exhibited tissue-specific expression to various degrees and the stability ranking order was eef1a1 > tuba1 > RNA 18 s > pabpc1 > ube2I > actb > gapdh58 > gapdh59 among tissue types. Four candidate genes eef1a1, tuba1, RNA 18 s and actb were used to analyse the stability in liver tissues of largemouth bass between the forage-fish group and the formulated-feed group. The candidate genes also showed some changes in expression levels in the livers, while eef1a1 and tuba1 had the most stable expression in livers of fish fed on alternative diets within 10 candidates. So eef1a1 and tuba1 were recommended as optimal reference gene in quantitative real-time PCR analysis to normalise the expression levels of target genes in tissues and lives of the M. salmoides fed on alternative diets. In livers, the expression levels of gck normalised by eef1a1 and tuba1 showed the significant up-regulation in formulated feed group (P < 0.05) than those in forage-fish group. While sex difference has no significant effects on the expression levels of gck in both groups.
Collapse
Affiliation(s)
- Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Peng Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjie Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjie Bai
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
14
|
Simmons DB, Cowie AM, Koh J, Sherry JP, Martyniuk CJ. Label-free and iTRAQ proteomics analysis in the liver of zebrafish (Danio rerio) following dietary exposure to the organochlorine pesticide dieldrin. J Proteomics 2019; 202:103362. [DOI: 10.1016/j.jprot.2019.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
|
15
|
Johnson SA, Spollen WG, Manshack LK, Bivens NJ, Givan SA, Rosenfeld CS. Hypothalamic transcriptomic alterations in male and female California mice ( Peromyscus californicus) developmentally exposed to bisphenol A or ethinyl estradiol. Physiol Rep 2018; 5:5/3/e13133. [PMID: 28196854 PMCID: PMC5309579 DOI: 10.14814/phy2.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine‐disrupting chemical (EDC) prevalent in many household items. Rodent models and human epidemiological studies have linked this chemical to neurobehavior impairments. In California mice, developmental exposure to BPA results in sociosexual disorders at adulthood, including communication and biparental care deficits, behaviors that are primarily regulated by the hypothalamus. Thus, we sought to examine the transcriptomic profile in this brain region of juvenile male and female California mice offspring exposed from periconception through lactation to BPA or ethinyl estradiol (EE, estrogen present in birth control pills and considered a positive estrogen control for BPA studies). Two weeks prior to breeding, P0 females were fed a control diet, or this diet supplemented with 50 mg BPA/kg feed weight or 0.1 ppb EE, and continued on the diets through lactation. At weaning, brains from male and female offspring were collected, hypothalamic RNA isolated, and RNA‐seq analysis performed. Results indicate that BPA and EE groups clustered separately from controls with BPA and EE exposure leading to unique set of signature gene profiles. Kcnd3 was downregulated in the hypothalamus of BPA‐ and EE‐exposed females, whereas Tbl2, Topors, Kif3a, and Phactr2 were upregulated in these groups. Comparison of transcripts differentially expressed in BPA and EE groups revealed significant enrichment of gene ontology terms associated with microtubule‐based processes. Current results show that perinatal exposure to BPA or EE can result in several transcriptomic alterations, including those associated with microtubule functions, in the hypothalamus of California mice. It remains to be determined whether these genes mediate BPA‐induced behavioral disruptions.
Collapse
Affiliation(s)
- Sarah A Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri.,Animal Sciences, University of Missouri, Columbia, Missouri
| | - William G Spollen
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Informatics Research Core Facility University of Missouri, Columbia, Missouri
| | - Lindsey K Manshack
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri
| | - Scott A Givan
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri .,Informatics Research Core Facility University of Missouri, Columbia, Missouri.,Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri .,Biomedical Sciences, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri
| |
Collapse
|
16
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
17
|
Slade L, Cowie A, Martyniuk CJ, Kienesberger PC, Pulinilkunnil T. Dieldrin Augments mTOR Signaling and Regulates Genes Associated with Cardiovascular Disease in the Adult Zebrafish Heart (Danio rerio). J Pharmacol Exp Ther 2017; 361:375-385. [DOI: 10.1124/jpet.116.239806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 11/22/2022] Open
|
18
|
Sarty KI, Cowie A, Martyniuk CJ. The legacy pesticide dieldrin acts as a teratogen and alters the expression of dopamine transporter and dopamine receptor 2a in zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:37-47. [PMID: 28163252 DOI: 10.1016/j.cbpc.2017.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Dieldrin (DLD) is a lipophilic pesticide that shows environmental persistence. The objectives were to determine the effects of DLD on GABAergic and dopaminergic systems in developing zebrafish. Both chorionated and dechorionated embryos (~24h post-hatch) were exposed to a single concentration of DLD (0.347-3470μM) for 48h. Following exposure, a subset of larvae was placed into clean water for 6days (i.e. depuration phase). Chorionated embryos showed <15% mortality while dechorionated embryos showed higher mortality (>30%), suggesting that the chorion protected the embryos. Over a 6day depuration phase, there was a dose dependent effect observed in both the "dechorionated and chorionated embryo" treatments for larval mortality (>60%). At the end of depuration, there was no detectable change in neuro-morphological endpoints that included the ratio of notochord length to body length (%) and the ratio of head area to body area (%). However, DLD did induce cardiac edema, skeletal deformities, and tremors. GABA-related transcripts were not affected in abundance by DLD. Conversely, the relative mRNA levels of dopamine transporter (dat1) and dopamine receptor drd2a mRNA were decreased in dechorionated, but not chorionated, embryos. These data suggest that DLD can alter the expression of transcripts related to dopaminergic signaling. Lastly, GABAA receptor subunits gabrB1 and gabrB2, as well as dopamine receptors drd1 and drd2a, were inherently higher in abundance in dechorionated embryos compared to chorionated embryos. This is an important consideration when incorporating transcriptomics into embryo testing as expression levels can change with removal of the chorion prior to exposure.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Chorion/physiology
- Dieldrin/toxicity
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryonic Development/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Insecticides/toxicity
- Larva/drug effects
- Larva/growth & development
- Larva/metabolism
- Osmolar Concentration
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Survival Analysis
- Teratogens/toxicity
- Zebrafish/embryology
- Zebrafish/growth & development
- Zebrafish/physiology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Kathleena I Sarty
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Andrew Cowie
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
19
|
Cowie AM, Sarty KI, Mercer A, Koh J, Kidd KA, Martyniuk CJ. Molecular networks related to the immune system and mitochondria are targets for the pesticide dieldrin in the zebrafish (Danio rerio) central nervous system. J Proteomics 2017; 157:71-82. [DOI: 10.1016/j.jprot.2017.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
|
20
|
Li M, Zhou S, Wang XS, Liu C, Li S. Effects of in vitro and in vivo avermectin exposure on alpha synuclein expression and proteasomal activity in pigeons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:24-31. [PMID: 27677079 DOI: 10.1016/j.ecoenv.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Avermectins (AVMs) are used worldwide in agriculture and veterinary medicine. Residues of avermectin drugs, causing toxicological effects on non-target organisms, have raised great concern. The aim of this study was to investigate the effects of AVM on the expression levels of alpha synuclein (α-Syn) and proteasomal activity in pigeon (Columba livia) neurons both in vivo and in vitro. The results showed that, the mRNA and protein levels of α-Syn increased in AVM treated groups relative to control groups in the cerebrum, cerebellum and optic lobe in vivo. Dose-dependent decreases in the proteasomal activity (i.e., chymotrypsin-like, trypsin-like and peptidylglutamyl peptidehydrolase) were observed both in vivo and in vitro. The results suggested that AVM could induce the expression levels of α-Syn and inhibit the normal physiological function of proteasome in brain tissues and neurons. The information presented in this study is helpful to understand the mechanism of AVM-induced neurotoxicology in birds.
Collapse
Affiliation(s)
- Ming Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Daqing Normal College, Daqing 163712, PR China
| | - Shuo Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xian-Song Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Bahamonde PA, McMaster ME, Servos MR, Martyniuk CJ, Munkittrick KR. Characterizing Transcriptional Networks in Male Rainbow Darter (Etheostoma caeruleum) that Regulate Testis Development over a Complete Reproductive Cycle. PLoS One 2016; 11:e0164722. [PMID: 27861489 PMCID: PMC5115663 DOI: 10.1371/journal.pone.0164722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/29/2016] [Indexed: 01/26/2023] Open
Abstract
Intersex is a condition that has been associated with exposure to sewage effluents in male rainbow darter (Etheostoma caeruleum). To better understand changes in the transcriptome that are associated with intersex, we characterized annual changes in the testis transcriptome in wild, unexposed fish. Rainbow darter males were collected from the Grand River (Ontario, Canada) in May (spawning), August (post-spawning), October (recrudescence), January (developing) and March (pre-spawning). Histology was used to determine the proportion of spermatogenic cell types that were present during each period of testicular maturation. Regression analysis determined that the proportion of spermatozoa versus spermatocytes in all stages of development (R2 ≥ 0.58) were inversely related; however this was not the case when males were in the post-spawning period. Gene networks that were specific to the transition from developing to pre-spawning stages included nitric oxide biosynthesis, response to wounding, sperm cell function, and stem cell maintenance. The pre-spawning to spawning transition included gene networks related to amino acid import, glycogenesis, Sertoli cell proliferation, sperm capacitation, and sperm motility. The spawning to post-spawning transition included unique gene networks associated with chromosome condensation, ribosome biogenesis and assembly, and mitotic spindle assembly. Lastly, the transition from post-spawning to recrudescence included gene networks associated with egg activation, epithelial to mesenchymal transition, membrane fluidity, and sperm cell adhesion. Noteworthy was that there were a significant number of gene networks related to immune system function that were differentially expressed throughout reproduction, suggesting that immune network signalling has a prominent role in the male testis. Transcripts in the testis of post-spawning individuals showed patterns of expression that were most different for the majority of transcripts investigated when compared to the other stages. Interestingly, many transcripts associated with female sex differentiation (i.e. esr1, sox9, cdca8 and survivin) were significantly higher in the testis during the post-spawning season compared to other testis stages. At post-spawning, there were higher levels of estrogen and androgen receptors (esr1, esr2, ar) in the testis, while there was a decrease in the levels of sperm associated antigen 1 (spag1) and spermatogenesis associated 4 (spata4) mRNA. Cyp17a was more abundant in the testis of fish in the pre-spawning, spawning, and post-spawning seasons compared to those individuals that were recrudescent while aromatase (cyp19a) did not vary in expression over the year. This study identifies cell process related to testis development in a seasonally spawning species and improves our understanding regarding the molecular signaling events that underlie testicular growth. This is significant because, while there are a number of studies characterizing molecular pathways in the ovary, there are comparatively less describing transcriptomic patterns in the testis in wild fish.
Collapse
Affiliation(s)
- Paulina A. Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
- * E-mail:
| | - Mark E. McMaster
- Environment Canada, Canada Center Inland Waters, National Water Research Institute, Aquatic Contaminant Research Division, Burlington, Ontario, Canada
| | - Mark R. Servos
- University of Waterloo, Department of Biology, Waterloo, Ontario, Canada
| | - Christopher J. Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Kelly R. Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
22
|
Martyniuk CJ, Doperalski NJ, Prucha MS, Zhang JL, Kroll KJ, Conrow R, Barber DS, Denslow ND. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:140-150. [DOI: 10.1016/j.cbd.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 12/28/2022]
|
23
|
Basu N. Applications and implications of neurochemical biomarkers in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:22-9. [PMID: 25331165 DOI: 10.1002/etc.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Thousands of environmental contaminants have neurotoxic properties, but their ecological risk is poorly characterized. Contaminant-associated disruptions to animal behavior and reproduction, both of which are regulated by the nervous system, provide decision makers with compelling evidence of harm, but such apical endpoints are of limited predictive or harm-preventative value. Neurochemical biomarkers, which may be used to indicate subtle changes at the subcellular level, may help overcome these limitations. Neurochemical biomarkers have been used for decades in the human health sciences and are now gaining increased attention in the environmental realm. In the present review, the applications and implications of neurochemical biomarkers to the field of ecotoxicology are discussed. The review provides a brief introduction to neurochemistry, covers neurochemical-based adverse outcome pathways, discusses pertinent strengths and limitations of neurochemical biomarkers, and provides selected examples across invertebrate and vertebrate taxa (worms, bivalves, fish, terrestrial and marine mammals, and birds) to document contaminant-associated neurochemical disruption. With continued research and development, neurochemical biomarkers may increase understanding of the mechanisms that underlie injury to ecological organisms, complement other measures of neurological health, and be integrated into risk assessment practices.
Collapse
Affiliation(s)
- Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Colli-Dula RC, Martyniuk CJ, Kroll KJ, Prucha MS, Kozuch M, Barber DS, Denslow ND. Dietary exposure of 17-alpha ethinylestradiol modulates physiological endpoints and gene signaling pathways in female largemouth bass (Micropterus salmoides). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:148-60. [PMID: 25203422 PMCID: PMC4252624 DOI: 10.1016/j.aquatox.2014.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 05/13/2023]
Abstract
17Alpha-ethinylestradiol (EE2), used for birth control in humans, is a potent estrogen that is found in wastewater at low concentrations (ng/l). EE2 has the ability to interfere with the endocrine system of fish, affecting reproduction which can result in population level effects. The objective of this study was to determine if dietary exposure to EE2 would alter gene expression patterns and key pathways in the liver and ovary and whether these could be associated with reproductive endpoints in female largemouth bass during egg development. Female LMB received 70ng EE2/g feed (administered at 1% of body weight) for 60 days. EE2 dietary exposure significantly reduced plasma vitellogenin concentrations by 70%. Hepatosomatic and gonadosomatic indices were also decreased with EE2 feeding by 38.5% and 40%, respectively. Transcriptomic profiling revealed that there were more changes in steady state mRNA levels in the liver compared to the ovary. Genes associated with reproduction were differentially expressed, such as vitellogenin in the liver and aromatase in the gonad. In addition, a set of genes related with oxidative stress (e.g. glutathione reductase and glutathione peroxidase) were identified as altered in the liver and genes associated with the immune system (e.g. complement component 1, and macrophage-inducible C-type lectin) were altered in the gonad. In a follow-up study with 0.2ng EE2/g feed for 60 days, similar phenotypic and gene expression changes were observed that support these findings with the higher concentrations. This study provides new insights into how dietary exposure to EE2 interferes with endocrine signaling pathways in female LMB during a critical period of reproductive oogenesis.
Collapse
Affiliation(s)
- Reyna-Cristina Colli-Dula
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Melinda S Prucha
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - David S Barber
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
25
|
Richter CA, Martyniuk CJ, Annis ML, Brumbaugh WG, Chasar LC, Denslow ND, Tillitt DE. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). Gen Comp Endocrinol 2014; 203:215-224. [PMID: 24694518 PMCID: PMC4145016 DOI: 10.1016/j.ygcen.2014.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/10/2014] [Accepted: 03/16/2014] [Indexed: 01/01/2023]
Abstract
Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.
Collapse
Affiliation(s)
- Catherine A. Richter
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65201, USA
- Corresponding author. Fax: +1 573 876 1896.
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Mandy L. Annis
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65201, USA
| | - William G. Brumbaugh
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65201, USA
| | - Lia C. Chasar
- U.S. Geological Survey, Florida Integrated Science Center, 2639 North Monroe Street, Suite A-200, Tallahassee, FL 32303, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Donald E. Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65201, USA
| |
Collapse
|
26
|
Patel II, Shearer DA, Fogarty SW, Fullwood NJ, Quaroni L, Martin FL, Weisz J. Infrared microspectroscopy identifies biomolecular changes associated with chronic oxidative stress in mammary epithelium and stroma of breast tissues from healthy young women: implications for latent stages of breast carcinogenesis. Cancer Biol Ther 2013; 15:225-35. [PMID: 24107651 DOI: 10.4161/cbt.26748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies of the decades-long latent stages of breast carcinogenesis have been limited to when hyperplastic lesions are already present. Investigations of earlier stages of breast cancer (BC) latency have been stymied by the lack of fiducial biomarkers needed to identify where in histologically normal tissues progression toward a BC might be taking place. Recent evidence suggests that a marker of chronic oxidative stress (OxS), protein adducts of 4-hydroxy-2-nonenal (4HNE), can meet this need. Specifically: (1) 4HNE immunopositive (4HNE+) mammary epithelial (ME) cells were found to be prevalent in normal (reduction mammoplasty) tissues of most women (including many teenagers) studied, representative of those living in the United States' high risk-posing environment and: (2) marked (> 1.5-fold) differences were identified between tissues of healthy young women with many vs. few 4HNE+ ME cells in the relative levels of transcripts for 42 of the 84 OxS-associated genes represented in SABioscience Oxidative-Stress/Oxidative-Defense PCR array. Herein we used synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy to identify molecular changes associated with 4HNE adducts in basal and luminal ME cells in terminal ductal units (TDLU), which are the cells of origin of BC, and associated intralobular and interlobular stroma, known contributors to carcinogenesis. Multivariate analysis-derived wavenumbers differentiated 4HNE+ and 4HNE- cells in each of the anatomical compartments. Specifically, principal component and linear discriminant analyses of mid-infrared spectra obtained from these cells revealed unambiguous, statistically highly significant differences in the "biochemical fingerprint" of 4HNE+ vs. 4HNE- luminal and basal ME cells, as well as between associated intralobular and interlobular stroma. These findings demonstrate further SR-FTIR microspectroscopy's ability to identify molecular changes associated with altered physiological and/or pathophysiological states, in this case with a state of chronic OxS that provides a pro-carcinogenic microenvironment.
Collapse
Affiliation(s)
- Imran I Patel
- Center for Biophotonics; Lancaster Environment Centre; Lancaster University; Lancaster, UK
| | - Debra A Shearer
- Department of Obstetrics and Gynecology; College of Medicine; Pennsylvania State University; Hershey, PA USA
| | - Simon W Fogarty
- Division of Biomedical and Life Sciences; Faculty of Health and Medicine; Lancaster University; Lancaster, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences; Faculty of Health and Medicine; Lancaster University; Lancaster, UK
| | | | - Francis L Martin
- Center for Biophotonics; Lancaster Environment Centre; Lancaster University; Lancaster, UK
| | - Judith Weisz
- Department of Obstetrics and Gynecology; College of Medicine; Pennsylvania State University; Hershey, PA USA; Department of Pathology; College of Medicine; Pennsylvania State University; Hershey, PA USA
| |
Collapse
|
27
|
Blazer VS, Pinkney AE, Jenkins JA, Iwanowicz LR, Minkkinen S, Draugelis-Dale RO, Uphoff JH. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:198-209. [PMID: 23384644 DOI: 10.1016/j.scitotenv.2012.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Langlois VS, Martyniuk CJ. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis. Mech Dev 2013; 130:304-22. [PMID: 23295496 DOI: 10.1016/j.mod.2012.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.
Collapse
Affiliation(s)
- Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4.
| | | |
Collapse
|
29
|
Sexually dimorphic transcriptomic responses in the teleostean hypothalamus: a case study with the organochlorine pesticide dieldrin. Neurotoxicology 2012; 34:105-17. [PMID: 23041725 DOI: 10.1016/j.neuro.2012.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 12/11/2022]
Abstract
Organochlorine pesticides (OCPs) such as dieldrin are a persistent class of aquatic pollutants that cause adverse neurological and reproductive effects in vertebrates. In this study, female and male largemouth bass (Micropterus salmoides) (LMB) were exposed to 3mg dieldrin/kg feed in a 2 month feeding exposure (August-October) to (1) determine if the hypothalamic transcript responses to dieldrin were conserved between the sexes; (2) characterize cell signaling cascades underlying dieldrin neurotoxicity; and (3) determine whether or not co-feeding with 17β-estradiol (E(2)), a hormone with neuroprotective roles, mitigates responses in males to dieldrin. Despite also being a weak estrogen, dieldrin treatments did not elicit changes in reproductive endpoints (e.g. gonadosomatic index, vitellogenin, or plasma E(2)). Sub-network (SNEA) and gene set enrichment analysis (GSEA) revealed that neuro-hormone networks, neurotransmitter and nuclear receptor signaling, and the activin signaling network were altered by dieldrin exposure. Most striking was that the majority of cell pathways identified by the gene set enrichment were significantly increased in females while the majority of cell pathways were significantly decreased in males fed dieldrin. These data suggest that (1) there are sexually dimorphic responses in the teleost hypothalamus; (2) neurotransmitter systems are a target of dieldrin at the transcriptomics level; and (3) males co-fed dieldrin and E(2) had the fewest numbers of genes and cell pathways altered in the hypothalamus, suggesting that E(2) may mitigate the effects of dieldrin in the central nervous system.
Collapse
|
30
|
Weisz J, Shearer DA, Murata E, Patrick SD, Han B, Berg A, Clawson GA. Identification of mammary epithelial cells subject to chronic oxidative stress in mammary epithelium of young women and teenagers living in USA: implication for breast carcinogenesis. Cancer Biol Ther 2012; 13:101-13. [PMID: 22231390 DOI: 10.4161/cbt.13.2.18873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current knowledge of changes in the mammary epithelium relevant to breast carcinogenesis is limited to when histological changes are already present because of a lack of biomarkers needed to identify where such molecular changes might be ongoing at earlier during the of decades-long latent stages of breast carcinogenesis. Breast reduction tissues from young women and teenagers, representative of USA's high breast cancer incidence population, were studies using immunocytochemistry and targeted PCR arrays in order to learn whether a marker of chronic oxidative-stress [protein adducts of 4-hydroxy-2-nonenal (4HNE)] can identify where molecular changes relevant to carcinogenesis might be taking place prior to any histological changes. 4HNE-immunopositive (4HNE+) mammary epithelial cell-clusters were identified in breast tissue sections from most women and from many teenagers (ages 14-30 y) and, in tissues from women ages 17-27 y with many vs. few 4HNE+ cells, the expression of 30 of 84 oxidative-stress associated genes was decreased and only one was increased > 2-fold. This is in contrast to increased expression of many of these genes known to be elicited by acute oxidative-stress. The findings validate using 4HNE-adducts to identify where molecular changes of potential relevance to carcinogenesis are taking place in histologically normal mammary epithelium and highlight differences between responses to acute vs. chronic oxidative-stress. We posit that the altered gene expression in 4HNE+ tissues reflect adaptive responses to chronic oxidative-stress that enable some cells to evade mechanisms that have evolved to prevent propagation of cells with oxidatively-damaged DNA and to accrue heritable changes needed to establish a cancer.
Collapse
Affiliation(s)
- Judith Weisz
- Department of Obstetrics and Gynecology; College of Medicine; Pennsylvania State University; Hershey, PA USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Quantification of monoamine neurotransmitters and melatonin in sea lamprey brain tissues by high performance liquid chromatography–electrospray ionization tandem mass spectrometry. Talanta 2012; 89:383-90. [DOI: 10.1016/j.talanta.2011.12.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022]
|
32
|
Popesku JT, Martyniuk CJ, Trudeau VL. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish. Front Endocrinol (Lausanne) 2012; 3:130. [PMID: 23130016 PMCID: PMC3487223 DOI: 10.3389/fendo.2012.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/12/2012] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15-40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons' disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems.
Collapse
Affiliation(s)
- Jason T. Popesku
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of OttawaOttawa, ON, Canada
- *Correspondence: Jason T. Popesku, Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5. e-mail: ; Vance L. Trudeau, Department of Biology, University of Ottawa, Room 160, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5. e-mail:
| | - Christopher J. Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New BrunswickSaint John, NB, Canada
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of OttawaOttawa, ON, Canada
- *Correspondence: Jason T. Popesku, Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5. e-mail: ; Vance L. Trudeau, Department of Biology, University of Ottawa, Room 160, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5. e-mail:
| |
Collapse
|
33
|
Waye A, Trudeau VL. Neuroendocrine disruption: more than hormones are upset. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:270-91. [PMID: 21790312 PMCID: PMC3173749 DOI: 10.1080/10937404.2011.578273] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Only a small proportion of the published research on endocrine-disrupting chemicals (EDC) directly examined effects on neuroendocrine processes. There is an expanding body of evidence that anthropogenic chemicals exert effects on neuroendocrine systems and that these changes might impact peripheral organ systems and physiological processes. Neuroendocrine disruption extends the concept of endocrine disruption to include the full breadth of integrative physiology (i.e., more than hormones are upset). Pollutants may also disrupt numerous other neurochemical pathways to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. Several examples are presented in this review, from both vertebrates and invertebrates, illustrating that diverse environmental pollutants including pharmaceuticals, organochlorine pesticides, and industrial contaminants have the potential to disrupt neuroendocrine control mechanisms. While most investigations on EDC are carried out with vertebrate models, an attempt is also made to highlight the importance of research on invertebrate neuroendocrine disruption. The neurophysiology of many invertebrates is well described and many of their neurotransmitters are similar or identical to those in vertebrates; therefore, lessons learned from one group of organisms may help us understand potential adverse effects in others. This review argues for the adoption of systems biology and integrative physiology to address the effects of EDC. Effects of pulp and paper mill effluents on fish reproduction are a good example of where relatively narrow hypothesis testing strategies (e.g., whether or not pollutants are sex steroid mimics) have only partially solved a major problem in environmental biology. It is clear that a global, integrative physiological approach, including improved understanding of neuroendocrine control mechanisms, is warranted to fully understand the impacts of pulp and paper mill effluents. Neuroendocrine disruptors are defined as pollutants in the environment that are capable of acting as agonists/antagonists or modulators of the synthesis and/or metabolism of neuropeptides, neurotransmitters, or neurohormones, which subsequently alter diverse physiological, behavioral, or hormonal processes to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. By adopting a definition of neuroendocrine disruption that encompasses both direct physiological targets and their indirect downstream effects, from the level of the individual to the ecosystem, a more comprehensive picture of the consequences of environmentally relevant EDC exposure may emerge.
Collapse
Affiliation(s)
- Andrew Waye
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Martyniuk CJ, Kroll KJ, Doperalski NJ, Barber DS, Denslow ND. Genomic and proteomic responses to environmentally relevant exposures to dieldrin: indicators of neurodegeneration? Toxicol Sci 2010; 117:190-9. [PMID: 20584760 DOI: 10.1093/toxsci/kfq192] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dieldrin is a persistent organochlorine pesticide that induces neurotoxicity in the vertebrate central nervous system and impairs reproductive processes in fish. This study examined the molecular events produced by subchronic dietary exposures to 2.95 mg dieldrin/kg feed in the neuroendocrine brain of largemouth bass, an apex predator. Microarrays, proteomics, and pathway analysis were performed to identify genes, proteins, and cell processes altered in the male hypothalamus. Fifty-four genes were induced, and 220 genes were reduced in steady-state levels (p < 0.001; fold change greater than +/- 1.5). Functional enrichment analysis revealed that the biological gene ontology categories of stress response, nucleotide base excision repair, response to toxin, and metabolic processes were significantly impacted by dieldrin. Using isobaric tagging for relative and absolute quantitation, 90 proteins in the male hypothalamus were statistically evaluated for changes in protein abundance. Several proteins altered by dieldrin are known to be associated with human neurodegenerative diseases, including apolipoprotein E, microtubule-associated tau protein, enolase 1, stathmin 1a, myelin basic protein, and parvalbumin. Proteins altered by dieldrin were involved in oxidative phosphorylation, differentiation, proliferation, and cell survival. This study demonstrates that a subchronic exposure to dieldrin alters the abundance of messenger RNAs and proteins in the hypothalamus that are associated with cell metabolism, cell stability and integrity, stress, and DNA repair.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|