1
|
Galvez-Llompart M, Zanni R, Manyes L, Meca G. Elucidating the mechanism of action of mycotoxins through machine learning-driven QSAR models: Focus on lipid peroxidation. Food Chem Toxicol 2023; 182:114120. [PMID: 37944785 DOI: 10.1016/j.fct.2023.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Understanding the mechanisms of mycotoxin toxicity is crucial for establishing effective guidelines and preventive strategies. In this study, machine learning models based on quantitative structure-activity relationship (QSAR) were employed to predict the lipid peroxidation activity of mycotoxins. Two different algorithms using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs) have been trained using a dataset of 70 mycotoxins. The LDA model had an average correct classification rate of 91%, while the ANN model achieved a perfect 100% classification rate. Following an internal validation process, the models were utilized to predict mycotoxins with known lipid peroxidation activity. The machine learning models achieved an 88% correct classification rate for these mycotoxins. Finally, by utilizing classified algorithms, the study aimed to infer the mechanism of action related to lipid peroxidation for 91 unstudied mycotoxins. These models provide a fast, accurate, and cost-effective means to assess the potential toxicity and mechanism of action of mycotoxins. The findings of this study contribute to a comprehensive understanding of mycotoxin toxicology and assist researchers and toxicologists in evaluating health risks associated with mycotoxin exposure and developing appropriate preventive strategies and potential therapeutic interventions to mitigate the effects of mycotoxins.
Collapse
Affiliation(s)
- Maria Galvez-Llompart
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Physical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Lara Manyes
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Giuseppe Meca
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Nguyen VTT, König S, Eggert S, Endres K, Kins S. The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biol Chem 2021; 403:3-26. [PMID: 34449171 DOI: 10.1515/hsz-2021-0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Mycotoxins are fungal metabolites that can cause various diseases in humans and animals. The adverse health effects of mycotoxins such as liver failure, immune deficiency, and cancer are well-described. However, growing evidence suggests an additional link between these fungal metabolites and neurodegenerative diseases. Despite the wealth of these initial reports, reliable conclusions are still constrained by limited access to human patients and availability of suitable cell or animal model systems. This review summarizes knowledge on mycotoxins associated with neurodegenerative diseases and the assumed underlying pathophysiological mechanisms. The limitations of the common in vivo and in vitro experiments to identify the role of mycotoxins in neurotoxicity and thereby in neurodegenerative diseases are elucidated and possible future perspectives to further evolve this research field are presented.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Svenja König
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, D-55131 Mainz, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Berntsen HF, Duale N, Bjørklund CG, Rangel-Huerta OD, Dyrberg K, Hofer T, Rakkestad KE, Østby G, Halsne R, Boge G, Paulsen RE, Myhre O, Ropstad E. Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 146:106240. [PMID: 33186814 DOI: 10.1016/j.envint.2020.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, 0304 Oslo, Norway.
| | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | | | - Kine Dyrberg
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Kirsten Eline Rakkestad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Gunn Østby
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ruth Halsne
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Gudrun Boge
- Department of Companion Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| |
Collapse
|
4
|
Berntsen HF, Moldes-Anaya A, Bjørklund CG, Ragazzi L, Haug TM, Strandabø RAU, Verhaegen S, Paulsen RE, Ropstad E, Tasker RA. Perfluoroalkyl acids potentiate glutamate excitotoxicity in rat cerebellar granule neurons. Toxicology 2020; 445:152610. [PMID: 33027616 DOI: 10.1016/j.tox.2020.152610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent man-made chemicals, ubiquitous in nature and present in human samples. Although restrictions are being introduced, they are still used in industrial processes as well as in consumer products. PFAAs cross the blood-brain-barrier and have been observed to induce adverse neurobehavioural effects in humans and animals as well as adverse effects in neuronal in vitro studies. The sulfonated PFAA perfluorooctane sulfonic acid (PFOS), has been shown to induce excitotoxicity via the N-methyl-D-aspartate receptor (NMDA-R) in cultures of rat cerebellar granule neurons (CGNs). In the present study the aim was to further characterise PFOS-induced toxicity (1-60 μM) in rat CGNs, by examining interactions between PFOS and elements of glutamatergic signalling and excitotoxicity. Effects of the carboxylated PFAA, perfluorooctanoic acid (PFOA, 300-500 μM) on the same endpoints were also examined. During experiments in immature cultures at days in vitro (DIV) 8, PFOS increased both the potency and efficacy of glutamate, whereas in mature cultures at DIV 14 only increased potency was observed. PFOA also increased potency at DIV 14. PFOS-enhanced glutamate toxicity was further antagonised by the competitive NMDA-R antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) at DIV 8. At DIV 8, PFOS also induced glutamate release (9-13 fold increase vs DMSO control) after 1-3 and 24 h exposure, whereas for PFOA a large (80 fold) increase was observed, but only after 24 h. PFOS and PFOA both also increased alanine and decreased serine levels after 24 h exposure. In conclusion, our results indicate that PFOS at concentrations relevant in an occupational setting, may be inducing excitotoxicity, and potentiation of glutamate signalling, via an allosteric action on the NMDA-R or by actions on other elements regulating glutamate release or NMDA-R function. Our results further support our previous findings that PFOS and PFOA at equipotent concentrations induce toxicity via different mechanisms of action.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep N-0033, Oslo, Norway.
| | - Angel Moldes-Anaya
- Research and Development (R&D) Section, PET Imaging Center, University Hospital of North Norway (UNN), Tromsø, Norway; Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway
| | - Lorenzo Ragazzi
- Neurobiology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Steven Verhaegen
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102, Oslo, Norway
| | - R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PEI, Canada; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Tie Y, Adams E, Deconinck E, Vanhee C. Substandard and falsified antimicrobials: A potential biohazard in disguise? Drug Test Anal 2019; 12:285-291. [PMID: 31758727 DOI: 10.1002/dta.2740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yaxin Tie
- Scientific Direction Chemical and Physical Health Risks, Section Medicines and Health Products, Sciensano, Brussels, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Leuven, Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Leuven, Belgium
| | - Eric Deconinck
- Scientific Direction Chemical and Physical Health Risks, Section Medicines and Health Products, Sciensano, Brussels, Belgium
| | - Celine Vanhee
- Scientific Direction Chemical and Physical Health Risks, Section Medicines and Health Products, Sciensano, Brussels, Belgium
| |
Collapse
|
6
|
Combs MD, Hamlin A, Quinn JC. A single exposure to the tremorgenic mycotoxin lolitrem B inhibits voluntary motor activity and spatial orientation but not spatial learning or memory in mice. Toxicon 2019; 168:58-66. [PMID: 31254599 DOI: 10.1016/j.toxicon.2019.06.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The indole diterpenoid toxin lolitrem B is a tremorgenic agent found in the common grass species, perennial ryegrass (Lolium perenne). The toxin is produced by a symbiotic fungus Epichloë festucae (var. lolii) and ingestion of infested grass with sufficient toxin levels causes a movement disorder in grazing herbivores known as 'ryegrass staggers'. Beside ataxia, lolitrem B intoxicated animals frequently show indicators of cognitive dysfunction or exhibition of erratic and unpredictable behaviours during handling. Evidence from field cases in livestock and controlled feeding studies in horses have indicated that intoxication with lolitrem B may affect higher cortical or subcortical functioning. In order to define the role of lolitrem B in voluntary motor control, spatial learning and memory under controlled conditions, mice were exposed to a known dose of purified lolitrem B toxin and tremor, coordination, voluntary motor activity and spatial learning and memory assessed. Motor activity, coordination and spatial memory were compared to tremor intensity using a novel quantitative piezo-electronic tremor analysis. Peak tremor was observed as frequencies between 15 and 25Hz compared to normal movement at approximately 1.4-10Hz. A single exposure to a known tremorgenic dose of lolitrem B (2 mg/kg IP) induced measureable tremor for up to 72 h in some animals. Initially, intoxication with lolitrem B significantly decreased voluntary movement. By 25 h post exposure a return to normal voluntary movement was observed in this group, despite continuing evidence of tremor. This effect was not observed in animals exposed to the short-acting tremorgenic toxin paxilline. Lolitrem B intoxicated mice demonstrated a random search pattern and delayed latency to escape a 3 h post intoxication, however by 27 h post exposure latency to escape matched controls and mice had returned to normal searching behavior indicating normal spatial learning and memory. Together these data indicate that the tremor exhibited by lolitrem B intoxicated mice does not directly impair spatial learning and memory but that exposure does reduce voluntary motor activity in intoxicated animals. Management of acutely affected livestock suffering toxicosis should be considered in the context of their ability to spatially orientate with severe toxicity.
Collapse
Affiliation(s)
- M D Combs
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia
| | - A Hamlin
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - J C Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2560, Australia; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, 2560, Australia.
| |
Collapse
|
7
|
Berntsen HF, Bjørklund CG, Strandabø R, Haug TM, Moldes-Anaya A, Fuentes-Lazaro J, Verhaegen S, Paulsen RE, Tasker RA, Ropstad E. PFOS-induced excitotoxicity is dependent on Ca2+ influx via NMDA receptors in rat cerebellar granule neurons. Toxicol Appl Pharmacol 2018; 357:19-32. [DOI: 10.1016/j.taap.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
|
8
|
Lheureux L, Bailly S, Kammerer M. Intoxication par les mycotoxines tremorgènes chez le chien. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2018. [DOI: 10.1016/j.toxac.2018.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Time-dependent effects of perfluorinated compounds on viability in cerebellar granule neurons: Dependence on carbon chain length and functional group attached. Neurotoxicology 2017; 63:70-83. [DOI: 10.1016/j.neuro.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022]
|
10
|
Berntsen HF, Bogen IL, Wigestrand MB, Fonnum F, Walaas SI, Moldes-Anaya A. The fungal neurotoxin penitrem A induces the production of reactive oxygen species in human neutrophils at submicromolar concentrations. Toxicology 2017; 392:64-70. [PMID: 29037868 DOI: 10.1016/j.tox.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022]
Abstract
Penitrem A is a fungal neurotoxin that recurrently causes intoxication in animals, and occasionally also in humans. We have previously reported that penitrem A induced the production of reactive oxygen species (ROS) in rat cerebellar granule cells, opening for a new mechanism of action for the neurotoxin. The aim of this study was to examine the potential of penitrem A to induce ROS production in isolated human neutrophil granulocytes, and to study possible mechanisms involved. Penitrem A significantly increased the production of ROS in human neutrophils at concentrations as low as 0.25μM (40% increase over basal levels), as measured with the DCF fluorescence assay. The EC50 determined for the production of ROS by penitrem A was 3.8μM. The maximal increase in ROS production was approximately 330% over basal levels at a concentration of 12.5μM. ROS formation was significantly inhibited by the antioxidant vitamin E (50μM), the intracellular Ca+2 chelator BAPTA-AM (5μM), the mitogen activated protein kinase kinase (MEK) 1/2 and 5 inhibitor U0126 (1 and 10μM), the p38 mitogen activated protein kinase (MAPK) inhibitor SB203580 (1μM), the c-Jun amino-terminal kinase (JNK) inhibitor SP600125 (10μM), and the calcineurin inhibitors FK-506 and cyclosporine A (1.5 and 0.5μM, respectively). These finding suggest that penitrem A is able to induce an increase in ROS production in neutrophils via the activation of several MAPK-signalling pathways. We suggest that this increase may partly explain the pathophysiology generated by penitrem A neuromycotoxicosis in both humans and animals.
Collapse
Affiliation(s)
- H F Berntsen
- Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway
| | - I L Bogen
- Oslo University Hospital, Department of Forensic Sciences, Section of Drug Abuse Research, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - M B Wigestrand
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - F Fonnum
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - S I Walaas
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - A Moldes-Anaya
- Section of Chemistry and Toxicology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway; R&D Section, PET-center, University Hospital of North Norway (UNN), P.O. Box 100 Langnes, N-9038 Tromsø, Norway.
| |
Collapse
|
11
|
Fæste CK, Moldes-Anaya A. Biotransformation of the fungal neurotoxin Thomitrem A by primary rat hepatocytes. Toxicon 2016; 124:36-43. [PMID: 27816536 DOI: 10.1016/j.toxicon.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
Abstract
The tremorgenic mycotoxin Thomitrem A is a secondary metabolite produced mainly by the fungus Penicillium crustosum that is frequently found on spoiled stored food and feed. Typical signs of intoxication observed in dogs after the consumption of food waste are emesis, tremors, seizures progressing to ataxia and lack of coordinated movements. How uptake of Thomitrem A relates to exposure is unknown so far since data on biotransformation and toxicokinetics are missing. In this study the toxin was therefore metabolised in an exploratory in vitro experiment by rat hepatocytes, and substrate depletion as well as the formation of hepatic metabolites were investigated. Seven metabolites were characterised by their retention times and fragmentation patterns in LC-MS/MS analysis. They were found to be products of oxidation and dehydration processes and occurred at different incubation time points, showing different signal abundance-time curve profiles. Toxicokinetic parameters were derived from the Thomitrem A depletion curve applying principles of in vitro-to-in vivo extrapolation (IVIVE). The predicted medium maximum bioavailability in rats could be of importance for the assessment of exposure in cases of intoxication if it was confirmed in vivo and in other species.
Collapse
Affiliation(s)
- Christiane K Fæste
- Section of Chemistry and Toxicology, Norwegian Veterinary Institute, Oslo, Norway
| | - Angel Moldes-Anaya
- Neurobiology Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
12
|
Tolou-Ghamari Z, Mortazavi M, Palizban AA, Najafi MR. The investigation of correlation between Iminoral concentration and neurotoxic levels after kidney transplantation. Adv Biomed Res 2015; 4:59. [PMID: 25802828 PMCID: PMC4361960 DOI: 10.4103/2277-9175.151876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/16/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Neurotoxicity side effects related to cyclosporine kinetics could lead to dysfunction of kidney graft and patient outcome after transplantation. The aim of this study was evidence-based pharmacotherapy of kidney transplant recipients and to investigate neurotoxic levels of Iminoral. Materials and Methods: The results of 2239 cyclosporine trough levels obtained from 743 patients were studied. Seventy-five adult kidney recipients who received Iminoral were studied for neurotoxicity symptoms. Demographic, clinical, hematology and biochemical data were recorded in d-base and analyzed using SPSS application for windows. Results: The mean value related to cyclosporine C0 was 246.3 μg/l. In the 48% the signs of neurotoxicity such as tremor and headache were noted, but only in 9% the levels of cyclosporine C0 were >400 μg/l. Further studies on 75 patients showed that the incidence of neurotoxic side effects were as follows: Tremor in 35, headache in 24 and anxiety in 34 recipients of kidney. The prescribed drug regimens from the day of transplant in most patients were based on mycophenolic acid or cellcept, pulse therapy using methylprednisolone (daily from kidney transplant up to 3 days after transplant), cyclosporine or Iminoral plus other drugs related to each individual. Administrations of ganciclovir, thymoglobulin, clotrimazol and prednisolone were also distinguished with immunosuppressant-based therapy simultaneously. Conclusion: Evidence-based study related to pharmacotherapy of Iminoral showed that clinical presentation related to neurotoxic side effects such as tremor, headache and anxiety might be due to many factors such as polypharmacy. Planning immunosuppression to individual patients based on programmed therapeutic Iminoral monitoring, avoiding polypharmacy in terms of removal or drug minimization and focusing on first week after transplant seem to be a realistic option.
Collapse
Affiliation(s)
- Zahra Tolou-Ghamari
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Mortazavi
- Isfahan Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas-Ali Palizban
- Department of Clinical Biochemistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Reza Najafi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
14
|
Kawasaki K, Kondoh E, Chigusa Y, Ujita M, Murakami R, Mogami H, Brown JB, Okuno Y, Konishi I. Reliable pre-eclampsia pathways based on multiple independent microarray data sets. Mol Hum Reprod 2014; 21:217-24. [PMID: 25323968 DOI: 10.1093/molehr/gau096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pre-eclampsia is a multifactorial disorder characterized by heterogeneous clinical manifestations. Gene expression profiling of preeclamptic placenta have provided different and even opposite results, partly due to data compromised by various experimental artefacts. Here we aimed to identify reliable pre-eclampsia-specific pathways using multiple independent microarray data sets. Gene expression data of control and preeclamptic placentas were obtained from Gene Expression Omnibus. Single-sample gene-set enrichment analysis was performed to generate gene-set activation scores of 9707 pathways obtained from the Molecular Signatures Database. Candidate pathways were identified by t-test-based screening using data sets, GSE10588, GSE14722 and GSE25906. Additionally, recursive feature elimination was applied to arrive at a further reduced set of pathways. To assess the validity of the pre-eclampsia pathways, a statistically-validated protocol was executed using five data sets including two independent other validation data sets, GSE30186, GSE44711. Quantitative real-time PCR was performed for genes in a panel of potential pre-eclampsia pathways using placentas of 20 women with normal or severe preeclamptic singleton pregnancies (n = 10, respectively). A panel of ten pathways were found to discriminate women with pre-eclampsia from controls with high accuracy. Among these were pathways not previously associated with pre-eclampsia, such as the GABA receptor pathway, as well as pathways that have already been linked to pre-eclampsia, such as the glutathione and CDKN1C pathways. mRNA expression of GABRA3 (GABA receptor pathway), GCLC and GCLM (glutathione metabolic pathway), and CDKN1C was significantly reduced in the preeclamptic placentas. In conclusion, ten accurate and reliable pre-eclampsia pathways were identified based on multiple independent microarray data sets. A pathway-based classification may be a worthwhile approach to elucidate the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | | | - Mari Ujita
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - J B Brown
- Department of Clinical System Onco-Informatics, Kyoto University, Kyoto, Japan
| | - Yasushi Okuno
- Department of Clinical System Onco-Informatics, Kyoto University, Kyoto, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Eriksen G, Moldes-Anaya A, Fæste C. Penitrem A and analogues: toxicokinetics, toxicodynamics including mechanism of action and clinical significance. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1574] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Penitrem A is a mycotoxin mainly produced by Penicillium crustosum, a fungal species occurring in all climate zones, ranging from tropical to arctic areas. P. crustosum produces a wide range of toxic metabolites, including penitrems, thomitrems and roquefortine C. The major metabolite, penitrem A, has been associated with several episodes of mycotoxicosis in dogs. The clinical symptoms of acute penitrem A intoxication include classical signs of neurotoxicity, such as tremors, convulsions, ataxia and nystagmus. The outcomes of penitrem A intoxication in animals range from total recovery to death, depending mainly on the level of exposure. Cases of suspected human mycotoxicosis following exposure to P. crustosum infected food, beer or inhalation of dust have also been reported. The toxicokinetics of penitrem A is scarcely studied. The toxin is rapidly absorbed, as demonstrated by the rapid onset of symptoms after exposure, but the absorption has not been quantified. Penitrem A is transported systemically after absorption and has been found in liver, kidney and brain as well as in serum and the gastrointestinal tract in exposed animals. Five phase I metabolites have been found in liver extracts of mice 60 min after oral exposure to penitrem A, while three metabolites were found after in vitro incubations with primary rat hepatocytes and rat liver microsomes. Only penitrem A was found in the brains of exposed mice or intoxicated dogs. The elimination has not been studied. Penitrem A is probably the main tremorgenic compound in Penicillium-infected food and feed commodities, since analogues had lower toxic potentials in comparative studies. Penitrem A affects the central as well as the peripheral nervous system. The toxin blocks the high-conductance Ca2+-activated potassium channels (BK) and impairs the GABAergic neurotransmission in the cerebellum. Animal poisoning by penitrem A is probably underdiagnosed due to a lack of knowledge among veterinarians.
Collapse
Affiliation(s)
- G.S. Eriksen
- Section of Chemistry and Toxicology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
| | - A. Moldes-Anaya
- Unilab Analyse AS, FRAM-High North Research Center for Climate and the Environment, 9296 Tromsø, Norway
- Cardiovascular Research Group, Insitute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - C.K. Fæste
- Section of Chemistry and Toxicology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
| |
Collapse
|