1
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
2
|
Storm-Mathisen J, Johnston GAR. In memoriam: Frode Fonnum (1937-2023). J Neurochem 2023; 167:711-715. [PMID: 37859335 DOI: 10.1111/jnc.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Frode Fonnum died unexpectedly on 26th April 2023, at 86 years of age. He was a tower of strength-a primeval force-in neuroscience, neurochemistry and toxicology. His highly cited publications, comprised salient evidence for GABA and glutamate as brain neurotransmitters. He served as an expert, and as an organizer, including of European research cooperation and as President of the International Society for Neurochemistry (ISN). Photo credit: Per Kristian Opstad.
Collapse
Affiliation(s)
| | - Graham A R Johnston
- Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021; 4:1129. [PMID: 34561524 PMCID: PMC8463681 DOI: 10.1038/s42003-021-02626-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.
Collapse
Affiliation(s)
- Nadja R Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jennifer M Panlilio
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Evgeny Ivashkin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
4
|
Li J, Jing Y, Liu Y, Ru Y, Ju M, Zhao Y, Li G. Large chromosomal deletions and impaired homologous recombination repairing in HEK293T cells exposed to polychlorinated biphenyl 153. PeerJ 2021; 9:e11816. [PMID: 34395077 PMCID: PMC8325425 DOI: 10.7717/peerj.11816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background Polychlorinated biphenyls (PCBs) are persistent pollutants with carcinogenesis and mutagenesis effects which have been closely associated with PCBs-induced DNA damage. However, the detailed DNA damage events and corresponding pathway alterations under PCBs poisoning is still not well understood. Methods Whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) were used to explore genome wide variations and related pathway changes in HEK293T cells that challenged by 15 µM PCB153 for 96 h in vitro. Double strand breaks (DSBs) were measured by 53BP1 foci detection, altered pathways were confirmed by quantitative real-time PCR (qPCR). Results The results indicated that abundant copy number variations (CNVs), including four duplications and 30 deletions, occurred in PCB153-exposed HEK293T cells. Multiple large fragment deletions (>1 Mb) involving up to 245 Mb regions on many chromosomes. Missense mutations were found in six tumor susceptibility genes, two of which are key members participating in homologous recombination (HR) repair response, BRCA1 and BRCA2. RNA-seq data showed that PCB153 poisoning apparently suppressedHR repairing genes. Besides, 15 µM PCB153 exposure significantly increased 53BP1 foci formation and effectively reduced BRCA1, RAD51B and RAD51C expression, indicating an elevated DSBs and impaired HR repairing. Conclusion This study firstly reported multiple large chromosomal deletions and impaired HR repairing in PCB153-exposed HEK293T cells, which provided a new insight into the understanding of early response and the mechanism underlying PCB153 genotoxicity. The chromosomal instabilities might be related to the impaired HR repairing that induced by PCB153; however, further investigations, especially on actual toxic effects of human body, are needed to confirm such speculation.
Collapse
Affiliation(s)
- Jiaci Li
- Tianjin Medical University, Tianjin, China
| | | | - Yi Liu
- Tianjin Medical University, Tianjin, China
| | - Yawei Ru
- Tianjin Medical University, Tianjin, China
| | - Mingyan Ju
- Tianjin Medical University, Tianjin, China
| | - Yuxia Zhao
- Tianjin Medical University, Tianjin, China
| | - Guang Li
- Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Sex-specific effects of developmental exposure to polychlorinated biphenyls on neuroimmune and dopaminergic endpoints in adolescent rats. Neurotoxicol Teratol 2020; 79:106880. [PMID: 32259577 DOI: 10.1016/j.ntt.2020.106880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Exposure to environmental contaminants early in life can have long lasting consequences for physiological function. Polychlorinated biphenyls (PCBs) are a group of ubiquitous contaminants that perturb endocrine signaling and have been associated with altered immune function in children. In this study, we examined the effects of developmental exposure to PCBs on neuroimmune responses to an inflammatory challenge during adolescence. Sprague Dawley rat dams were exposed to a PCB mixture (Aroclor 1242, 1248, 1254, 1:1:1, 20 μg/kg/day) or oil control throughout pregnancy, and adolescent male and female offspring were injected with lipopolysaccharide (LPS, 50 μg/kg, ip) or saline control prior to euthanasia. Gene expression profiling was conducted in the hypothalamus, prefrontal cortex, striatum, and midbrain. In the hypothalamus, PCBs increased expression of genes involved in neuroimmune function, including those within the nuclear factor kappa b (NF-κB) complex, independent of LPS challenge. PCB exposure also increased expression of receptors for dopamine, serotonin, and estrogen in this region. In contrast, in the prefrontal cortex, PCB exposure blunted or induced irregular neuroimmune gene expression responses to LPS challenge. Moreover, neither PCB nor LPS exposure altered expression of neurotransmitter receptors throughout the mesocorticolimbic circuit. Almost all effects were present in males but not females, in agreement with the idea that male neuroimmune cells are more sensitive to perturbation and emphasizing the importance of studying both male and female subjects. Given that altered neuroimmune signaling has been implicated in mental health and substance abuse disorders that often begin during adolescence, these results highlight neuroimmune processes as another mechanism by which early life PCBs can alter brain function later in life.
Collapse
|
6
|
Keil KP, Sethi S, Lein PJ. Sex-Dependent Effects of 2,2',3,5',6-Pentachlorobiphenyl on Dendritic Arborization of Primary Mouse Neurons. Toxicol Sci 2019; 168:95-109. [PMID: 30395321 PMCID: PMC6390665 DOI: 10.1093/toxsci/kfy277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Early life exposures to environmental contaminants are implicated in the pathogenesis of many neurodevelopmental disorders (NDDs). These disorders often display sex biases, but whether environmental neurotoxicants act in a sex-dependent manner to modify neurodevelopment is largely unknown. Since altered dendritic morphology is associated with many NDDs, we tested the hypothesis that male and female primary mouse neurons are differentially susceptible to the dendrite-promoting activity of 2,2',3,5',6-pentachlorobiphenyl (PCB 95). Hippocampal and cortical neuron-glia co-cultures were exposed to vehicle (0.1% dimethylsulfoxide) or PCB 95 (100 fM-1 μM) from day in vitro 7-9. As determined by Sholl analysis, PCB 95-enhanced dendritic growth in female but not male hippocampal and cortical neurons. In contrast, both male and female neurons responded to bicuculline with increased dendritic complexity. Detailed morphometric analyses confirmed that PCB 95 effects on the number and length of primary and nonprimary dendrites varied depending on sex, brain region and PCB concentration, and that female neurons responded more consistently with increased dendritic growth and at lower concentrations of PCB 95 than their male counterparts. Exposure to PCB 95 did not alter cell viability or the ratio of neurons to glia in cultures of either sex. These results demonstrate that cultured female mouse hippocampal and cortical neurons are more sensitive than male neurons to the dendrite-promoting activity of PCB 95, and suggest that mechanisms underlying PCB 95-induced dendritic growth are sex-dependent. These data highlight the importance of sex in neuronal responses to environmental neurotoxicants.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616,To whom correspondence should be addressed at Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616. Fax: (530) 752-7690; E-mail:
| |
Collapse
|
7
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
8
|
Enayah SH, Vanle BC, Fuortes LJ, Doorn JA, Ludewig G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 2017; 394:93-101. [PMID: 29233657 DOI: 10.1016/j.tox.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Polychlorinated biphenyls (PCB) exposure at low chronic levels is a significant public health concern. Animal and epidemiological studies indicate that low PCB body burden may cause neurotoxicity and be a risk factor for neurodegenerative diseases. In the current study, we measured the ability of two non-dioxin like PCBs, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and 2,2'3,5',6-pentachlorobiphenyl (PCB95), to alter dopamine (DA) levels and metabolism using the dopaminergic PC12 cell line. Our hypothesis is that treatment of PC12 cells with non-toxic concentrations of PCB153 or PCB95 for 12 and 24 h will have different effects due to different congener structures. Levels of DA and of 3,4-dihydroxyphenylacetaldehyde (DOPAL), 3, 4-dihyroxylphenylethanol (DOPET), and 3,4-dihyroxylphenylacetic acid (DOPAC) metabolite, gene expression of the dopamine synthesis enzyme tyrosine hydroxylase (TH) and the vesicular monoamine transporter (VMAT2), and gene expression of the anti-oxidant enzymes Cu/Zn and Mn superoxide oxidase (Cu/ZnSOD, MnSOD), glutathione peroxidase (GPx) and catalase were determined. PCB153 decreased intracellular and extracellular levels of DA after 12 h exposure and this was consistent with an increase in DA metabolites. After 24 h, the level of DA in medium increased compared to the control. In contrast, PCB95 exposure increased the intracellular DA level and decreased DA in medium consistent with a down-regulation of VMAT2 expression at 12 h. After 24 h exposure, PCB95 increased DA levels in media. Expression of TH mRNA increased slightly following 12 h but not at 24 h exposure. MnSOD mRNA increased up to 6-7 fold and Cu/ZnSOD increased less than two-fold after treatment with both congeners. Catalase expression was up-regulated following 24 h exposure to PCB153 and PCB95, but GPx expression was down-regulated after 12 h exposure to PCB95 only. These results suggest that PCB153 and PCB95 are neurotoxic and affect DA turnover with structure-dependent differences between these two congeners.
Collapse
Affiliation(s)
- Sabah H Enayah
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States
| | - Brigitte C Vanle
- Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, United States
| | - Laurence J Fuortes
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States; Department of Occupational & Environmental Health, University of Iowa, United States
| | - Jonathan A Doorn
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States; Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States; Department of Occupational & Environmental Health, University of Iowa, United States.
| |
Collapse
|
9
|
Miller MM, Sprowles JLN, Voeller JN, Meyer AE, Sable HJK. Cocaine sensitization in adult Long-Evans rats perinatally exposed to polychlorinated biphenyls. Neurotoxicol Teratol 2017; 62:34-41. [PMID: 28465083 DOI: 10.1016/j.ntt.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxicants known to adversely affect the nervous system and more specifically the dopamine system. Developmental PCB exposure in rats has been shown to produce alterations in dopaminergic signaling that persist into adulthood. The reinforcing properties of psychostimulants are typically modulated via the dopaminergic system, so this project used a behavioral sensitization paradigm to evaluate whether perinatal PCB exposure altered sensitization to the psychostimulant cocaine. Long-Evans rats were perinatally exposed to 0, 3 or 6mg/kg/day of PCBs throughout gestation and lactation. One male and female pup from each litter was retained for behavioral testing. Both horizontal and vertical activity were used to measure cocaine sensitization following repeated injections of 10mg/kg cocaine (IP) on post-natal day (PND) 91-96 and again after a week in the home cage on PND 103. A final locomotor activity session following a challenge injection of 20mg/kg was given on PND 110 to further evaluate the availability of presynaptic dopamine stores. The PCB-exposed rats appeared to be pre-sensitized to cocaine as they exhibited a greater degree of cocaine-induced locomotor activation to the initial injections of cocaine and therefore demonstrated a more rapid onset of cocaine behavioral sensitization compared to non-exposed controls. These results add to the literature detailing how perinatal exposure to dopamine-disrupting contaminants can change the developing brain, thereby producing permanent changes in the neurobehavioral response to psychostimulants later in life.
Collapse
Affiliation(s)
- Mellessa M Miller
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Jenna L N Sprowles
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jason N Voeller
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Abby E Meyer
- Department of Psychological Science, University of North, Georgia, Dahlonega, GA 30597
| | - Helen J K Sable
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
10
|
Kern JK, Geier DA, Homme KG, King PG, Bjørklund G, Chirumbolo S, Geier MR. Developmental neurotoxicants and the vulnerable male brain: a systematic review of suspected neurotoxicants that disproportionally affect males. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Chai T, Cui F, Yin Z, Yang Y, Qiu J, Wang C. Chiral PCB 91 and 149 Toxicity Testing in Embryo and Larvae (Danio rerio): Application of Targeted Metabolomics via UPLC-MS/MS. Sci Rep 2016; 6:33481. [PMID: 27629264 PMCID: PMC5024159 DOI: 10.1038/srep33481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.
Collapse
Affiliation(s)
- Tingting Chai
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Yin
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|