1
|
Abdian S, Fakhri S, Moradi SZ, Khirehgesh MR, Echeverría J. Saffron and its major constituents against neurodegenerative diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156097. [PMID: 39577115 DOI: 10.1016/j.phymed.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Neurodegeneration has been recognized as the main pathophysiological alteration in the majority of brain-related diseases. Despite contemporary attempts to provide acceptable medicinal therapies, the conclusion has not been much beneficial. Besides, the complex pathophysiological mechanisms behind neurodegenerative diseases (NDDs) urge the needs for finding novel multi-target agents. Accordingly, saffron with major active constituents and as multi-targeting agents have shown beneficial effects in modulating NDDs with higher efficacy and lower side effects. PURPOSE The present study provides a systematic and comprehensive review of the existing in vitro, in vivo, and clinical data on the effectiveness, and signaling pathways of saffron and its key phytochemical components in the management of NDDs. The need to develop novel saffron delivery systems is also considered. METHODS Studies were identified through a systematic and comprehensive search in Science Direct, PubMed, and Scopus databases through April 30, 2024. The whole saffron major constituents (e.g., saffron, crocin, crocetin, picrocrocin, and safranal) and NDDs (e.g., neuro*, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Huntington*, Parkinson*, Alzheimer*, and brain) were selected as keywords to find related studies. In the systematic analysis, 64 articles were directly included in the current study. Additional reports were added within the comprehensive studies in the review. RESULTS Saffron and its active metabolites crocin, crocetin, safranal, and picrocrocin have shown acceptable efficacy in managing NDDs like Alzheimer's disease, Parkinson's disease, Attention deficit hyperactivity disorder, depression, and other NDDs via modulating apoptotic (e.g., caspases, Bax/Bcl-2, cytochrome c, and death receptors), inflammatory (e.g., NF-κB, IL-1β, IL-6, TNF-α, and COX-2), and oxidative strass (e.g., Nrf2, GSH, GPx, CAT, SOD, MDA, ROS, and nitrite) signaling pathways. The presented in vitro, in vivo, and clinical evidences showed us a better future of controlling NDDs with higher efficacy, while decreasing associated side effects with no significant toxicity. Additionally, employing novel delivery systems could increase the efficacy of saffron phytoconstituents to resolve the issues pharmacokinetic limitations. CONCLUSION Saffron and its major constituents employ anti-inflammatory, anti-apoptotic and antioxidant mechanisms in modulating several dysregulated-signaling pathways in NDDs. However, further research is necessary to elucidate the precise underlying mechanisms in exploring the feasibility of using saffron active compounds against NDDs. More studies should focus on dose-response relationships, long-term effects, highlighting key mechanisms, and designing more well-controlled clinical trials. Additionally, developing stable and cost-benefit novel delivery systems in future works helps to remove the pharmacokinetic limitations of saffron major constituents.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Mohammad Soleymani S, Assarzadegan F, Habibi SAH, Mahboubi A, Esmaily H. The effect of crocin on movement disorders and oxidative DNA damage in Parkinson's disease: Insights from a randomized controlled trial. Parkinsonism Relat Disord 2024; 126:107051. [PMID: 39025034 DOI: 10.1016/j.parkreldis.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Parkinson's disease (PD), the second most prevalent neurological disorder in the elderly, manifests with distinctive movement disorders, including bradykinesia, resting tremor, and stiffness. With a progressive course, current treatment strategies primarily target symptomatic relief. Crocin is a chemical compound isolated from the dry stigma of Crocus sativus, and has demonstrated neuroprotective properties. OBJECTIVES This study explores the impact of crocin on movement disorders and neuronal oxidative DNA damage in PD patients. METHOD Conducted as a randomized, blinded, and controlled trial, this research focused on patients aged 30 to 80 with idiopathic PD. Using the second and third parts of the movement disorder society-unified PD rating scale (MDS-UPDRS), aspects of daily life activity and movement disorders were assessed before and after an 8-week intervention. Patients in the crocin groups received capsules containing 30 mg of crocin twice daily. Additionally, the 8-hydroxy-2-deoxydiguanosine (8-OHdG) to urinary creatinine ratio (8-OHdG/uCr) was measured to evaluate neuronal oxidative DNA damage. RESULTS Out of the initially evaluated 164 patients, 30 were randomly assigned to each group, with 53 subjects completing the study. Within-group analysis revealed a significant improvement in the second and third parts of MDS-UPDRS after 8 weeks of crocin intervention (P < 0.05). However, the 8-OHdG/uCr did not show significant changes. The well-tolerated daily dose of 60 mg of crocin demonstrated minimal side effects. CONCLUSION This study establishes the efficacy of crocin in enhancing daily life activities and mitigating movement disorders, suggesting its potential as a supplementary intervention alongside conventional PD medications.
Collapse
Affiliation(s)
- Saeed Mohammad Soleymani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Research Development Center, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Assarzadegan
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Research Development Center, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaily
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Research Development Center, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Banaeeyeh S, Afkhami-Goli A, Moosavi Z, Razavi BM, Hosseinzadeh H. Anti-inflammatory, antioxidant and anti-mitophagy effects of trans sodium crocetinate on experimental autoimmune encephalomyelitis in BALB/C57 mice. Metab Brain Dis 2024; 39:783-801. [PMID: 38739183 DOI: 10.1007/s11011-024-01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by the degeneration of myelin and inflammation in the central nervous system. Trans sodium crocetinate (TSC), a novel synthetic carotenoid compound, possesses antioxidant, anti-inflammatory and neuroprotective effects. This study aimed to evaluate the protective effects of TSC against the development of experimental autoimmune encephalomyelitis (EAE), a well-established model for MS. Female BALB/C57 mice were divided into different groups, including control, EAE, vehicle, TSC-treated (25, 50, and 100 mg/kg, administered via gavage) + EAE, methyl prednisone acetate + EAE, and TSC-treated (100 mg/kg, administered via gavage for 28 days) groups. EAE was induced using MOG35-55, complete Freund's adjuvant, and pertussis toxin. In the mice spinal cord tissues, the oxidative markers (GSH and MDA) were measured using spectrophotometry and histological evaluation was performed. Mitophagic pathway proteins (PINK1and PARKIN) and inflammatory factors (IL-1β and TNF-α) were evaluated by western blot. Following 21 days post-induction, EAE mice exhibited weight loss, and the paralysis scores increased on day 13 but recovered after TSC (100 mg/kg) administration on day 16. Furthermore, TSC (50 and 100 mg/kg) reversed the altered levels of MDA and GSH in the spinal cord tissue of EAE mice. TSC (100 mg/kg) also decreased microgliosis, demyelination, and the levels of inflammatory markers IL-1β and TNF-α. Notably, TSC (100 mg/kg) modulated the mitophagy pathway by reducing PINK1 and Parkin protein levels. These findings demonstrate that TSC protects spinal cord tissue against EAE-induced MS through anti-inflammatory, antioxidant, and anti-mitophagy mechanisms.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Afkhami-Goli
- Division of Pharmacology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Bej E, Volpe AR, Cesare P, Cimini A, d'Angelo M, Castelli V. Therapeutic potential of saffron in brain disorders: From bench to bedside. Phytother Res 2024; 38:2482-2495. [PMID: 38446350 DOI: 10.1002/ptr.8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Saffron is a spice derived from the flower of Crocus sativus L., which has been used for centuries as a coloring and flavoring agent, as well as a source of medicinal compounds. Saffron contains various bioactive constituents, such as crocin, crocetin, safranal, picrocrocin, and kaempferol, that have shown potential benefits for human health. Among them, crocin is the most abundant and characteristic constituent of saffron, responsible for its bright red color and antioxidant properties. One of the most promising applications of saffron and its constituents is in the prevention and treatment of neurological disorders, such as depression, anxiety, Alzheimer's disease, Parkinson's disease, and other brain disorders. Saffron and its constituents have been reported to exert neuroprotective effects through various mechanisms, such as modulating neurotransmitters, enhancing neurogenesis, reducing neuroinflammation, regulating oxidative stress, activating the Nrf2 signaling pathway, and modulating epigenetic factors. Several clinical and preclinical studies have demonstrated the efficacy and safety of saffron and its constituents in improving cognitive function, mood, and other neurological outcomes. In this review, we summarize the current evidence on the therapeutic potential of saffron and its constituents in neurological disorders, from bench to bedside. We also discuss the challenges and future directions for the development of saffron-based therapies for brain health.
Collapse
Affiliation(s)
- Erjola Bej
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Rita Volpe
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
Zhang W, Ju Y, Ren Y, Miao Y, Wang Y. Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease via Drosophila Melanogaster (Fruit Fly) Models. Curr Drug Targets 2024; 25:77-93. [PMID: 38213160 DOI: 10.2174/0113894501281402231218071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, partly attributed to mutations, environmental toxins, oxidative stress, abnormal protein aggregation, and mitochondrial dysfunction. However, the precise pathogenesis of PD and its treatment strategy still require investigation. Fortunately, natural products have demonstrated potential as therapeutic agents for alleviating PD symptoms due to their neuroprotective properties. To identify promising lead compounds from herbal medicines' natural products for PD management and understand their modes of action, suitable animal models are necessary. Drosophila melanogaster (fruit fly) serves as an essential model for studying genetic and cellular pathways in complex biological processes. Diverse Drosophila PD models have been extensively utilized in PD research, particularly for discovering neuroprotective natural products. This review emphasizes the research progress of natural products in PD using the fruit fly PD model, offering valuable insights into utilizing invertebrate models for developing novel anti-PD drugs.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
6
|
Wu Y, Gong Y, Sun J, Zhang Y, Luo Z, Nishanbaev SZ, Usmanov D, Song X, Zou L, Benito MJ. Bioactive Components and Biological Activities of Crocus sativus L. Byproducts: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19189-19206. [PMID: 37963243 DOI: 10.1021/acs.jafc.3c04494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The production of saffron spice results in numerous byproducts, as only 15 g of spice can be produced from 1 kg of flowers, indicating that over 90% of the saffron flower material is eventually discarded as waste. In view of this, the paper reviews current knowledge on the natural active components in saffron byproducts and their biological activities, aiming to lay a theoretical and scientific foundation for the further utilization. Saffron byproducts contain a variety of phytochemical components, such as flavonoids, anthocyanins, carotenoids, phenolic acids, monoterpenoids, alkaloids, glycosides, and saponins. The activities of saffron byproducts and their mechanisms are also discussed in detail here.
Collapse
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yucui Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Juan Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yao Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Sabir Z Nishanbaev
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Durbek Usmanov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310023, China
| | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Badajoz 06007, Spain
| |
Collapse
|
7
|
Alexoudi A, Kesidou L, Gatzonis S, Charalampopoulos C, Tsoga A. Effectiveness of the Combination of Probiotic Supplementation on Motor Symptoms and Constipation in Parkinson's Disease. Cureus 2023; 15:e49320. [PMID: 38146566 PMCID: PMC10749423 DOI: 10.7759/cureus.49320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) reflects the second most common neurodegenerative disorder and is associated with high morbidity and mortality. Besides the motor features, non-motor symptoms, such as constipation, are very common. There is accumulating evidence that neuroinflammation is associated with the PD pathological processes. Alterations of gut microbiota and microbial metabolites have been linked to the pathogenesis of PD. Previous research has shown that probiotic supplementation has beneficial effects on motor and non-motor symptoms and especially on constipation. AIM In this study, we examine the effectiveness of a combination of probiotic supplementation (butyrate triglyceride 302.86 mg, Crocus sativus L. 30 mg, and vitamin D3 100 mcg), on constipation and motor symptoms in PD. METHODS The present study is a retrospective study that examined the existing medical records of patients with diagnosed PD, having chronic constipation and used the probiotic supplementation for its management. A total of 41 existing medical records were screened. Medical records were excluded in the case of participation in another study for PD, suffering from irritable bowel syndrome, organic constipation, long-term laxative use changes in the standard dopaminergic treatment, Mini-Mental Status Examination (MMSE) score<24, hospitalization and antibiotic medication, and diarrheal syndrome. Nine medical records were excluded, and a final number of 32 medical records was finally examined. All 32 patients had evaluations carried out at baseline and three months after supplement administration. A stool diary questionnaire, the Unified Parkinson's Disease Rating Scale III (UPDRS III), and the Schwab and England and the Hoehn and Yahr scales were used for the evaluation. RESULTS The median defecation frequency was significantly improved. The supplementation administration significantly improved UPDRS III by 7.7% (from 35.72±15.51 to 32.97±15.71, p = 0.005) at month three, as compared to baseline. A positive effect was also seen in the Schwab and England scale. There was no effect on the Hoehn and Yahr scale. CONCLUSION The enteric microbiome composition is altered in PD, and there is accumulating evidence that probiotic supplementation could alleviate disease symptoms in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Athanasia Alexoudi
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, GRC
- Neurology, Neurological Institute of Athens (NIA), Athens, GRC
| | - Lydia Kesidou
- Dentistry, Santorini General Hospital, Santorini, GRC
| | - Stylianos Gatzonis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, GRC
| | | | - Areti Tsoga
- Department of Public Health Policy, University of West Attica, Athens, GRC
| |
Collapse
|
8
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
9
|
de Alencar LP, da Costa LL, Lisboa DR, Silva JR, Santos SF, Pereira MP, de Lima Yamaguchi KK, de Oliveira Souza A. Piranhea trifoliata extracts ameliorate muscular decline in Drosophila melanogaster exposed to Paraquat. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21994. [PMID: 36567513 DOI: 10.1002/arch.21994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In this study, we have demonstrated, for the first time, the muscular protective effects of Piranhea trifoliata bark extract against Paraquat (PQ)-induced oxidative stress in Drosophila melanogaster. Exposure of D. melanogaster (Canton Special) to PQ caused oxidative stress, as evidenced by protein carbonyl and elevated acetylcholinesterase (AChE) activity levels. However, a diet supplemented with the P. trifoliata extracts (0.1 mg/ml) for 10 days ameliorates protein carbonyl levels and enzymatic activities of AChE and citrate synthase to prevent PQ damage. Also, P. trifoliata bark extracts showed in phytochemical assays the presence of phenols, at 46.06 mg EAG/g extract of total phenolic compounds, and a 40% 2,2-diphenyl-1-picryl-hydrazyl scavenging effect. The study showed the muscular protective function of the P. trifoliata extracts in D. melanogaster exposed to PQ. On the basis of the results, we contemplate that the bark of P. trifoliata might prevent and ameliorate human diseases caused by oxidative stress. The muscular action of the P. trifoliata extract can be attributed to the antioxidant constituents, while the precise mechanism of its action needs further investigation.
Collapse
Affiliation(s)
- Letícia P de Alencar
- Food and Nutrition Department, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Lorena L da Costa
- Bioscience Institute, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Douglas R Lisboa
- Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Jadyellen R Silva
- Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Stephanie F Santos
- Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Mayara P Pereira
- Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | | | - Anderson de Oliveira Souza
- Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
10
|
Rasheed MZ, Khatoon R, Talat F, Alam MM, Tabassum H, Parvez S. Melatonin Mitigates Rotenone-Induced Oxidative Stress and Mitochondrial Dysfunction in the Drosophila melanogaster Model of Parkinson's Disease-like Symptoms. ACS OMEGA 2023; 8:7279-7288. [PMID: 36872990 PMCID: PMC9979363 DOI: 10.1021/acsomega.2c03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder; however, its etiology remains elusive. Antioxidants are considered to be a promising approach for decelerating neurodegenerative disease progression owing to extensive examination of the relationship between oxidative stress and neurodegenerative diseases. In this study, we investigated the therapeutic effect of melatonin against rotenone-induced toxicity in the Drosophila model of PD. The 3-5 day old flies were divided into four groups: control, melatonin alone, melatonin and rotenone, and rotenone alone groups. According to their respective groups, flies were exposed to a diet containing rotenone and melatonin for 7 days. We found that melatonin significantly reduced the mortality and climbing ability of Drosophila because of its antioxidative potency. It alleviated the expression of Bcl 2, tyrosine hydroxylase (TH), NADH dehydrogenase, mitochondrial membrane potential, and mitochondrial bioenergetics and decreased caspase 3 expression in the Drosophila model of rotenone-induced PD-like symptoms. These results indicate the neuromodulatory effect of melatonin, and that it is likely modulated against rotenone-induced neurotoxicity by suppressing oxidative stress and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Md. Zeeshan Rasheed
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehana Khatoon
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Faizia Talat
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug
Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry,
School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division
of Basic Medical Sciences, Indian Council
of Medical Research, Ministry of Health and Family Welfare, Govt.
of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi 110029, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
11
|
Goyal A, Verma A, Agrawal A, Dubey N, Kumar A, Behl T. Therapeutic implications of crocin in Parkinson's disease: A review of preclinical research. Chem Biol Drug Des 2023; 101:1229-1240. [PMID: 36752710 DOI: 10.1111/cbdd.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Parkinson's disease is among the most common forms of neurodegenerative illness, with present treatment being primarily symptomatic and frequently coming with substantial adverse effects. Neuronal degeneration may arise due to a variety of pathological events, like inflammatory responses, neurotransmitter dysregulation, oxidative damage, mitochondrial malfunction, apoptosis, and genetic factors. The health issue and financial burden brought on by Parkinson's disease can worsen as the population ages. In the search for new and secure therapeutic agents for Parkinson's disease, several natural compounds have been shown to exert considerable neuroprotective benefits. Crocin, a naturally occurring carotenoid molecule, was found to have neuroprotective potential in the therapy of this disorder. Taking into account, the outcomes of various studies and the restorative actions of crocin, the present study emphasized the protective ability of crocin in this disease. Given the strong evidence supporting the neuroprotective ability of crocin, it is inferred that crocin inhibits inflammatory, apoptotic, and antioxidant processes through multiple mechanisms. Therefore, this compound is considered a safe and effective therapeutic choice for neurodegenerative illnesses like Parkinson's disease. However, more research on its efficacy as a treatment of Parkinson's disease is needed, specifically examining its mechanisms and the results obtained in clinical trials.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Abhay Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidohli, Uttarakhand, India
| |
Collapse
|
12
|
Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics (Basel) 2022; 11:antibiotics11121690. [PMID: 36551347 PMCID: PMC9774676 DOI: 10.3390/antibiotics11121690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Plant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs. The fabricated AgNPs were analyzed (UV−Vis, FTIR, EDS, and SEM) to determine the functional groups (alcohol, carboxylic acids, phenol, proteins, and aldehydes) and to observe the shape (agglomerated crystalline and rod-shaped structure). The disc diffusion method was used to test the antimicrobial properties of synthesized Ag-NPs against E. coli and P. putida. For 24 to 120 h, newly enclosed flies and third instar larvae of Drosophila were treated with UD and UD AgNPs. After exposure, tests for biochemical effects (acetylcholinesterase inhibition and protein estimation assays), cytotoxicity (dye exclusion), and behavioral effects (jumping and climbing assays) were conducted. The results showed that nanoparticles were found to have potent antimicrobial activity against all microbial strains tested at various concentrations. In this regard, ethno-medicinal characteristics exhibit a similar impact in D. melanogaster, showing (p < 0.05) significantly decreased cellular toxicity (trypan blue dye), enhanced biochemical markers (AChE efficacy and proteotoxicity), and improved behavioral patterns in the organism treated with UD AgNPs, especially in comparison to UD extract. The results of this study may help in the utilization of specific plants as reliable sources of natural antioxidants that may have been beneficial in the synthesis of metallic NPs, which aids in the production of nanomedicine and other therapeutic applications.
Collapse
|
13
|
Salem M, Shaheen M, Borjac J. Crocin suppresses inflammation-induced apoptosis in rmTBI mouse model via modulation of Nrf2 transcriptional activity. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Shabir S, Yousuf S, Singh SK, Vamanu E, Singh MP. Ethnopharmacological Effects of Urtica dioica, Matricaria chamomilla, and Murraya koenigii on Rotenone-Exposed D. melanogaster: An Attenuation of Cellular, Biochemical, and Organismal Markers. Antioxidants (Basel) 2022; 11:1623. [PMID: 36009342 PMCID: PMC9405140 DOI: 10.3390/antiox11081623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Natural antioxidants derived from plants have been proven to have significant inhibitory effects on the free radicals of living organisms during actively metabolization. Excessive production of free radicals increases the risk of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and motor sclerosis. This study aimed to compare the ethnopharmacological effects of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) on the amelioration of rotenone-induced toxicity in wild-type Drosophila melanogaster (Oregon R+) at biochemical, cellular, and behavioral levels. Phytoextracts were prepared from all three plants, i.e., UD, MC, and MK (aqueous and ethanolic fractions), and their bioactive compounds were evaluated using in vitro biochemical parameters (DPPH, ABTS, TPC, and TFC), UV-Vis, followed by FT-IR and HPLC. Third instar larvae and freshly eclosed flies were treated with 500 µM rotenone alone or in combination with UD, MC, and MK for 24 to 120 h. Following exposure, cytotoxicity (dye exclusion test), biochemical (protein estimation and acetylcholinesterase inhibition assays), and behavioral assays (climbing and jumping assays) were performed. Among all three plant extracts, MK exhibited the highest antioxidant properties due to the highest TPC, TFC, DPPH, and ABTS, followed by UD, then MC. The overall trend was MK > UD > MC. In this context, ethnopharmacological properties mimic the same effect in Drosophila, exhibiting significantly (p < 0.05) reduced cytotoxicity (trypan blue), improved biochemical parameters (proteotoxicity and AChE activity), and better behavioral parameters in the organisms cotreated with phyto extracts compared with rotenone. Conclusively, UV-Vis, FTIR, and HPLC analyses differentiated the plant extracts. The findings of this research may be beneficial in the use of select herbs as viable sources of phyto-ingredients that could be of interest in nutraceutical development and various clinical applications.
Collapse
Affiliation(s)
- Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
15
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Zhong K, Qian C, Lyu R, Wang X, Hu Z, Yu J, Ma J, Ye Y. Anti-Epileptic Effect of Crocin on Experimental Temporal Lobe Epilepsy in Mice. Front Pharmacol 2022; 13:757729. [PMID: 35431921 PMCID: PMC9009530 DOI: 10.3389/fphar.2022.757729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common kind of refractory epilepsy. More than 30% TLE patients were multi-drug resistant. Some patients may even develop into status epilepticus (SE) because of failing to control seizures. Thus, one of the avid goals for anti-epileptic drug development is to discover novel potential compounds to treat TLE or even SE. Crocin, an effective component of Crocus sativus L., has been applied in several epileptogenic models to test its anti-epileptic effect. However, it is still controversial and its effect on TLE remains unclear. Therefore, we investigated the effects of crocin on epileptogenesis, generalized seizures (GS) in hippocampal rapid electrical kindling model as well as SE and spotaneous recurrent seizure (SRS) in pilocarpine-induced TLE model in ICR mice in this study. The results showed that seizure stages and cumulative afterdischarge duration were significantly depressed by crocin (20 and 50 mg/kg) during hippocampal rapid kindling acquisition. And crocin (100 mg/kg) significantly reduced the incidence of GS and average seizure stages in fully kindled animals. In pilocarpine-induced TLE model, the latency of SE was significantly prolonged and the mortality of SE was significantly decreased by crocin (100 mg/kg), which can also significantly suppress the number of SRS. The underlying mechanism of crocin may be involved in the protection of neurons, the decrease of tumor necrosis factor-α in the hippocampus and the increase of brain derived neurotrophic factor in the cortex. In conclusion, crocin may be a potential and promising anti-epileptic compound for treatment of TLE.
Collapse
Affiliation(s)
- Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chengyu Qian
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rui Lyu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xinyi Wang
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zhe Hu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. Anti-Depressant Properties of Crocin Molecules in Saffron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072076. [PMID: 35408474 PMCID: PMC9000812 DOI: 10.3390/molecules27072076] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany;
- German Institute of Food Technologies (DIL e.V.), 49610 D-Quakenbrück, Germany
| | - Ali Ali Redha
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Remmet Snoeck
- Food Technology Study Programme, HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, The Netherlands;
| | - Shubhra Singh
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung City 912, Taiwan;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC 24711, USA;
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189, Iran
- Correspondence:
| |
Collapse
|
18
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
20
|
Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:antiox11020211. [PMID: 35204092 PMCID: PMC8868341 DOI: 10.3390/antiox11020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, an autochthonous variety of sweet cherry (Prunus avium L.), namely “Moretta di Vignola”, was processed to prepare extracts rich in polyphenols, which were characterized by high-performance liquid chromatography (HPLC) separation coupled to UV/DAD and ESI-MSn analysis. Then, a sweet cherry anthocyanin-rich extract (ACE) was prepared, fully characterized and tested for its activity against Parkinson’s disease (PD) in cellular (BV2 microglia and SH-SY5Y neuroblastoma) and in Drosophila melanogaster rotenone (ROT)-induced model. The extract was also evaluated for its antioxidant activity on Caenorhabditis elegans by assessing nematode resistance to thermal stress. In both cell lines, ACE reduced ROT-induced cell death and it decreased, alone, cellular reactive oxygen species (ROS) content while reinstating control-like ROS values after ROT-induced ROS rise, albeit at different concentrations of both compounds. Moreover, ACE mitigated SH-SY5Y cell cytotoxicity in a non-contact co-culture assay with cell-free supernatants from ROT-treated BV-2 cells. ACE, at 50 µg/mL, ameliorated ROT (250 μM)-provoked spontaneous (24 h duration) and induced (after 3 and 7 days) locomotor activity impairment in D. melanogaster and it also increased survival and counteracted the decrease in fly lifespan registered after exposure to the ROT. Moreover, heads from flies treated with ACE showed a non-significant decrease in ROS levels, while those exposed to ROT markedly increased ROS levels if compared to controls. ACE + ROT significantly placed the ROS content to intermediate values between those of controls and ROT alone. Finally, ACE at 25 µg/mL produced a significant increase in the survival rate of nematodes submitted to thermal stress (35 °C, 6–8 h), at the 2nd and 9th day of adulthood. All in all, ACE from Moretta cherries can be an attractive candidate to formulate a nutraceutical product to be used for the prevention of oxidative stress-induced disorders and related neurodegenerative diseases.
Collapse
|
21
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
22
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
23
|
Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H. Protective Effect of Crocin against Mitochondrial Damage and Memory Deficit Induced by Beta-amyloid in the Hippocampus of Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:79-94. [PMID: 34567148 PMCID: PMC8457717 DOI: 10.22037/ijpr.2020.112206.13604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease is the most common form of dementia among the elderly. This progressive neurodegenerative disorder affects brain regions that control cognition, memory, language, speech, and awareness. As a potent antioxidant, crocin has been proposed to effectively manage the neurodegenerative disease. In this study, the recovery effects of crocin on the memory deficits caused by the intra-hippocampal injection of amyloid beta1-42 (Aβ1-42) were evaluated in rats. We also considered the protective effects of crocin on the mitochondrial damage caused by Aβ1-42. We examined the memory deficits of rats with the help of the Morris water maze. Then, we determined different mitochondrial toxicity endpoints caused by Aβ1-42, including mitochondrial ROS formation, lipid peroxidation, mitochondrial membrane potential collapse, mitochondrial outer membrane integrity, and cytochrome c release. Our results demonstrated that the behavioral signs of memory deficiency caused by Aβ1-42 significantly (P < 0.01) reduced by both pretreatment and post-treatment with crocin (30 mg/kg). Furthermore, crocin prevented all the Aβ1-42 induced above referenced mitochondrial upstream toxic events leading to neuronal apoptosis. These results demonstrated that crocin is a promising preventive candidate for the potential treatment of Alzheimer's disease. Furthermore, it seems that the antioxidant and neuroprotective effects of crocin are better seen when the compound is pretreated beforehand rather than introduced afterward in Aβ1-42 exposed mitochondria.
Collapse
Affiliation(s)
- Bahareh Sadat Yousefsani
- Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Traditional Pharmacy, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
The Effect of Saffron Supplementation on Blood Pressure in Adults: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13082736. [PMID: 34444896 PMCID: PMC8398601 DOI: 10.3390/nu13082736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The favorable influences of saffron supplementation on metabolic diseases have previously been shown. We aimed to assess the effects of saffron supplementation on blood pressure in adults. Methods: A systematic search was performed in Scopus, Embase, and the Cochrane library databases to find randomized controlled trials (RCTs) related to the effect of saffron supplementation on blood pressure in adults up to March 2021. The primary search yielded 182 publications, of which eight RCTs were eligible. Results: Our results showed that saffron supplementation resulted in a significant decrease in systolic blood pressure (weighted mean difference (WMD): −0.65 mmHg; 95% CI: −1.12 to −0.18, p = 0.006) and diastolic blood pressure (DBP) (WMD: −1.23 mmHg; 95% CI: −1.64 to −0.81, p < 0.001). Moreover, saffron supplementation reduced DBP in a non-linear fashion, based on duration (r = −2.45, p-nonlinearity = 0.008). Conclusions: Saffron supplementation may significantly improve both systolic and diastolic blood pressure in adults. It should be noted that the hypotensive effects of saffron supplementation were small and may not reach clinical importance.
Collapse
|
25
|
Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M, Fatema K, Rehman S, Azad MAM, Ebrahimi-Barough S. Pesticides and Parkinson's disease: Current and future perspective. J Chem Neuroanat 2021; 115:101966. [PMID: 33991619 DOI: 10.1016/j.jchemneu.2021.101966] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Inappropriate use of pesticides has globally exposed mankind to a number of health hazards. Still their production is rising at the rate of 11 % annually and, has already exceeded more than 5 million tons in 2000 (FAO 2017). Plenty of available data reveals that pesticides exposures through agricultural use and food-preservative residue consumption may lead to neurodegenerative disorders like Parkinson's and Alzheimer's diseases. Parkinson's disease (PD) is a progressive motor impairment and a neurodegenerative disorder, considered as the leading source of motor disability. Pesticides strongly inhibit mitochondrial Complex-I, causing mitochondrial dysfunction and death of dopaminergic neurons in the substantia nigra (SN), thus leading to pathophysiologic implications of PD. Current medical treatment strategies, including pharmacotherapeutics and supportive therapies can only provide symptomatic relief. While complementary and alternative medicines including traditional medicine or acupuncture are considered as beneficial ways of treatment with significant clinical effect. Medically non-responding cases can be treated by surgical means, 'Deep Brain Stimulation'. Cell therapy is also an emerging and promising technology for disease modeling and drug development in PD. Their main aim is to replace and/or support the lost and dying dopaminergic neurons in the SN. Recently I/II clinical phase trial (Japan) have used dopaminergic progenitors generated from induced pluripotent stem (iPS) cells which can unveil a successful cell therapy to treat PD symptoms efficiently. This review focuses on PD caused by pesticides use, current treatment modalities, and ongoing research updates. Since PD is not a cell-autonomous disease rather caused by multiple factors, a combinatorial therapeutic approach may address not only the motor-related symptoms but also non-motor cognitive-behavioral issues.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| | - Fazli Azim
- Dept. of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; IHITC: Isolation Hospital & Infection Treatment Centre, Islamabad, Pakistan.
| | - Hedaeytullah Saju
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Arman Zargaran
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Meysam Shirzad
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Mostofa Kamal
- Shaheed Suhrawardi Medical College & Hospital, Dhaka, Bangladesh.
| | - Kaniz Fatema
- National Institute of Cardiovascular Diseases and Hospital (NICVD), Dhaka, Bangladesh.
| | - Sumbul Rehman
- Faculty of Unani Medicine, Department of Ilmul Advia (Unani Pharmacology), Aligarh Muslim University, India.
| | - M A Momith Azad
- Dept of Research & Product Development (Natural Medicine), The IBN SINA Pharma Ltd, Bangladesh.
| | - Somayeh Ebrahimi-Barough
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
26
|
Antioxidant effects of ankaferd blood stopper doped polyvinyl pyrolidon in an experimental model created in insect. Food Chem Toxicol 2020; 148:111935. [PMID: 33348050 DOI: 10.1016/j.fct.2020.111935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
This research evaluated Ankaferd Blood Stopper (ABS)-doped Polyvinylpyrrolidone (PVP) nanofiber layers which were produced with the electrospinning method for their potential for co-use in response to oxidative stress. As a result of the use of such a preparation (ABS doped PVP) in long-term treatments, the response to oxidative stress was compared to biochemical parameters, and its effect on sex was also aimed to be determined. For this purpose, Drosophila melanogaster foods were coated with 10% PVP, ABS (2 ml) and PVP-ABS. In total, 300 flies were randomized into 6 groups, each consisting of 25 female and 25 male insects, and the insects were fed with the determined coated mediums. The effects of foods on adult flies were tested for biochemical changes (Malondialdehyde-MDA and Total oxidation status-TOS, Glutathione-S-Transferase-GST, Catalase-CAT and Superoxide dismutase-SOD activities, Total antioxidant capacity-TAS) at the end of ten days. It was determined that the separate use of the two substances increased the amount of MDA in both sexes. It was found that the combined use of PVP-ABS had a positive effect similar to the control by increasing the antioxidant enzymes (SOD, CAT, GST). Feeding with ABS-doped PVP in the male insects reduced TOS (2.00 ± 0.01 μmol H2O2Eq/L), but the female insects were found to have higher OSI (40.00 ± 0.01 μmol H2O2Eq/L). As a result, PVP-ABS may be used together as an antioxidant, but more detailed studies are needed for their safe use on both sexes.
Collapse
|
27
|
Chen Q, Xu B, Huang W, Amrouche AT, Maurizio B, Simal-Gandara J, Tundis R, Xiao J, Zou L, Lu B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Krishnaswamy VKD, Alugoju P, Periyasamy L. Effect of short-term oral supplementation of crocin on age-related oxidative stress, cholinergic, and mitochondrial dysfunction in rat cerebral cortex. Life Sci 2020; 263:118545. [PMID: 33038382 DOI: 10.1016/j.lfs.2020.118545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Aging is associated with oxidative stress and altered cholinergic and mitochondrial function. Crocin is a carotenoid antioxidant that quenches free radicals and protects cells and tissues from oxidation in biological systems. The aim of the present study is to investigate the effect of oral supplementation of Crocin on age-associated oxidative stress, cholinergic, and mitochondrial function in rat cerebral cortex. MAIN METHODS The middle-aged (15 months old) rats were segregated into three groups (n = 6): Control (ad-libitum fed +0.9% saline as vehicle), Cro 50 (ad-libitum fed + crocin 50 mg/kg/day), Cro 150 (ad-libitum fed + crocin 150 mg/kg/day). The experiment was scheduled for 45 days. The serum and brain parameters were estimated after euthanasia. KEY FINDINGS Crocin supplementation of Cro 50 and Cro 150 displayed a relative decline in body weight gain during the experimental period and significantly reduced age-associated serum triglyceride level over control. In rat cerebral cortex, age-associated macromolecular damage, decline in endogenous antioxidants and an increase in intracellular calcium concentration were significantly reversed due to oral supplementation of Crocin. Cro 150 significantly improved acetylcholine content as a consequence of acetylcholinesterase inhibition. Further, remarkable mitochondrial function was observed in Cro 150 over the control group as determined by citrate synthase and cytochrome C oxidase enzyme activities. SIGNIFICANCE Oral supplementation of Crocin significantly reversed age-associated oxidative stress and neuroinflammatory markers. Meanwhile, Cro 150 remarkably improved cholinergic and mitochondrial function over the control group and facilitated further delay in the aging process due to enhanced cognitive effect.
Collapse
Affiliation(s)
- V K D Krishnaswamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, India
| | - Phaniendra Alugoju
- Department of Biochemistry and Molecular Biology, Pondicherry University, India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, India.
| |
Collapse
|
29
|
Bian Y, Zhao C, Lee SMY. Neuroprotective Potency of Saffron Against Neuropsychiatric Diseases, Neurodegenerative Diseases, and Other Brain Disorders: From Bench to Bedside. Front Pharmacol 2020; 11:579052. [PMID: 33117172 PMCID: PMC7573929 DOI: 10.3389/fphar.2020.579052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing morbidity rates of brain disorders and conditions such as anxiety, depression, Alzheimer’s disease, and Parkinson’s disease have become a severe problem in recent years. Although researchers have spent considerable time studying these diseases and reported many positive outcomes, there still are limited drugs available for their treatment. As a common traditional Chinese medicine (TCM), saffron was employed to treat depression and some other inflammatory diseases in ancient China due to its antioxidant, anti-inflammatory, and antidepressant properties. In modern times, saffron and its constituents have been utilized, alone and in TCM formulas, to treat neuropsychiatric and neurodegenerative diseases. In this review, we mainly focus on recent clinical and preclinical trials of brain disorders in which saffron was applied, and summarize the neuroprotective properties of saffron and its constituents from chemical, pharmacokinetic, and pharmacological perspectives. We discuss the properties of saffron and its constituents, as well as their applications for treating brain disorders; we hope that this review will serve as a comprehensive reference for studies aimed at developing therapeutic drugs based on saffron.
Collapse
Affiliation(s)
- Yaqi Bian
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
30
|
Sun C, Nile SH, Zhang Y, Qin L, El-Seedi HR, Daglia M, Kai G. Novel Insight into Utilization of Flavonoid Glycosides and Biological Properties of Saffron ( Crocus sativus L.) Flower Byproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10685-10696. [PMID: 32924469 DOI: 10.1021/acs.jafc.0c04076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Saffron (Crocus sativus L.) byproducts are considered as a cheap source of bioactive polyphenolics endowed with potential antioxidant effects. The saffron biowaste is utilized for extraction of flavonoid glycosides and their potential biological properties. The total amount of polyphenolics and polysaccharides was found to be higher in the tepal than in the stamen. The bioactive compounds quercetin-3-O-sophoroside (Q-3-sop) and kaempferol-3-O-sophoroside (K-3-sop) were analyzed using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-PDA) and identified by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). The antioxidant effects were studied using 2,2 diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), ferric ion reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC); Q-3-sop showed stronger antioxidant effects compared to K-3-sop, crocin-I, and crocin-II. Furthermore, Q-3-sop also inhibited cell apoptosis caused by H2O2 by reducing the levels of cellular reactive oxygen species (ROS). In terms of cytogenetic effects, Q-3-sop revealed no cytogenic effects on onion root meristem cells but chromosomal aberration was observed at the highest dose (200 ppm). Thus, saffron byproducts and its flavonoids could be utilized as natural antioxidant agents with no cytogenetic effects.
Collapse
Affiliation(s)
- Chengtao Sun
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yiting Zhang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Luping Qin
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
31
|
Therapeutic potentials of crocin in medication of neurological disorders. Food Chem Toxicol 2020; 145:111739. [PMID: 32916219 DOI: 10.1016/j.fct.2020.111739] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Neurological sicknesses are serious, multifactorial, debilitating disorders that may cause neurodegeneration. Neuroprotection is the protection of the structure and capacity of neurons from affronts emerging from cell injuries instigated by an assortment of specialists or neurodegenerative diseases. Various neurodegenerative diseases, including Alzheimer's, Parkinson's, and epilepsy, afflict many people worldwide, with increasing age representing the leading risk factor. Crocin is a natural carotenoid compound which was found to have therapeutic potentials in the management of the neurological disease. In this review, we focused on the restorative capabilities of Crocin as a neuroprotective agent. The general neuroprotective impact and the various conceivable basic components identified with Crocin have been examined. In light of the substantial proof indicating the neuro-pharmacological viability of Crocin to different exploratory standards, it is concluded that Crocin exerts direct antioxidant, antiapoptotic and anti-inflammatory activities by multiple signaling pathways. Besides, Crocin was found to elevate dopamine level in the brain during the experimental model of Parkinson's disease. Thus, this compound has been demonstrated to be a promising option for the treatment of neurodegenerative diseases, with few adverse effects. It ought to be further considered as a potential contender for neuro-therapeutics, concentrating on the mechanistic and clinical evidence for its effects.
Collapse
|
32
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
33
|
Matiytsiv NP, Chernyk YI. Drosophila melanogaster as a Model System for the Study of Human Neuropathy and the Testing of Neuroprotectors. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway. Mol Neurobiol 2020; 57:3158-3170. [DOI: 10.1007/s12035-020-01941-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
|
35
|
Zhong K, Wang RX, Qian XD, Yu P, Zhu XY, Zhang Q, Ye YL. Neuroprotective effects of saffron on the late cerebral ischemia injury through inhibiting astrogliosis and glial scar formation in rats. Biomed Pharmacother 2020; 126:110041. [PMID: 32113053 DOI: 10.1016/j.biopha.2020.110041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
This study is to explore the neuroprotective effects and involved glial scar of saffron (Crocus sativus L.) on the late cerebral ischemia in rats. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats that were randomly divided into sham group, MCAO group, edaravone group (as a positive control) and saffron groups (saffron extract 30, 100, 300 mg/kg). Saffron was administered orally at 2 h at the first day and once daily from day 2 to 42 after ischemia. Behavioral changes were detected from day 43 to 46 after ischemia to evaluate the effects of saffron. Infarct volume, survival neuron density, activated astrocyte, and the thickness of glial scar were also detected. GFAP, neurocan, phosphocan, neurofilament expressions and inflammatory cytokine contents were detected by Western-blotting and ELISA methods, respectively. Saffron improved the body weight loss, neurological deficit and spontaneous activity. It also ameliorated anxiety-like state and cognitive dysfunction, which were detected by elevated plus maze (EPM), marble burying test (MBT) and novel object recognition test (NORT). Toluidine blue staining found that saffron treatment decreased the infarct volume and increased the neuron density in cortex in the ischemic boundary zone. The activated astrocyte number and the thickness of glial scar in the penumbra zone reduced after saffron treatment. Additionally, saffron decreased the contents of IL-6 and IL-1β, increased the content of IL-10 in the ischemic boundary zone. GFAP, neurocan, and phosphocan expressions in ischemic boundary zone and ischemic core zone all decreased after saffron treatment. Saffron exerted neuroprotective effects on late cerebral ischemia, associating with attenuating astrogliosis and glial scar formation after ischemic injury.
Collapse
Affiliation(s)
- Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rou-Xin Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Ping Yu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin-Ying Zhu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Lu Ye
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Rao SV, Hemalatha P, Yetish S, Muralidhara M, Rajini PS. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: behavioural and biochemical evidence. Metab Brain Dis 2019; 34:1341-1353. [PMID: 31214956 DOI: 10.1007/s11011-019-00451-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
Previously we have demonstrated the potential neuroprotective propensity of saffron and Crocin (CR) employing a Drosophila model of Parkinsonism. Rotenone (ROT) has been extensively used as a model neurotoxin to induce Parkinson's disease (PD) like symptoms in mice. In the present study, as a proof of concept we evaluated the efficacy of CR prophylaxis (25 mg/ kg bw/d, 7d) to attenuate ROT(0.5 mg/Kg bw/d,7d) -induced neurotoxic effects in male mice focussing on neurobehavioural assessments and biochemical determinants in the striatum. CR prophylaxis significantly alleviated ROT-induced behavioural alterations such as increased anxiety, diminished exploratory behaviour, decreased motor co-ordination, and grip strength. Concomitantly, we evidenced diminution of oxidative stress markers, enhanced levels of antioxidant enzyme and mitochondrial enzyme function in the striatal region. Further, varying degree of restoration of cholinergic function, dopamine and α-synuclein levels were discernible suggesting the possible mechanism/s of action of CR in this model. Based on our earlier data in flies and in worm model, we propose its use as an adjuvant therapeutic agent in oxidative stress-mediated neurodegenerative conditions such as PD.
Collapse
Affiliation(s)
- Sriranjini Venkata Rao
- Department of Biochemistry, Mysuru, India.
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India.
| | - P Hemalatha
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | - S Yetish
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | | | - Padmanabhan S Rajini
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| |
Collapse
|
37
|
Pashirzad M, Shafiee M, Avan A, Ryzhikov M, Fiuji H, Bahreyni A, Khazaei M, Soleimanpour S, Hassanian SM. Therapeutic potency of crocin in the treatment of inflammatory diseases: Current status and perspective. J Cell Physiol 2019; 234:14601-14611. [PMID: 30673132 DOI: 10.1002/jcp.28177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Crocin is the major component of saffron, which is used in phytomedicine for the treatment of several diseases including diabetes, fatty liver, depression, menstruation disorders, and, of special interest in this review, inflammatory diseases. Promising selective anti-inflammatory properties of this pharmacological active component have been observed in several studies. Saffron has been shown to exert anti-inflammatory properties against several inflammatory diseases and can be used as a novel therapeutic agent for the treatment of inflammatory diseases either alone or in combination with other standard anti-inflammatory agents. This review summarizes the protective role of saffron and its pharmacologically active constituents in the pathogenesis of inflammatory diseases including digestive diseases, dermatitis, asthma, atherosclerosis, and neurodegenerative diseases for a better understanding and hence a better management of these diseases.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Hamid Fiuji
- Department of Biochemistry, Payame-Noor University, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer's and Parkinson's Disease. Curr Neuropharmacol 2019; 17:377-402. [PMID: 29564976 PMCID: PMC6482475 DOI: 10.2174/1570159x16666180321095705] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Reactive oxygen species and reactive nitrogen species, which are collectively called reactive oxygen-nitrogen species, are the inevitable by-products of cellular metabolic redox reactions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reactions of biotransformation of exogenous and endogenous substrata in endoplasmic reticulum, eicosanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medicinal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Turkey, Iran, India, China, Egypt and Mexico. OBJECTIVE The present study aims to address the protective role of Crocus Sativus L. in neurodegeneration with an emphasis in Parkinson's and Alzheimer's disease. MATERIALS AND METHODS An electronic literature search was conducted by two of the authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Hence, the authors focused on the literature concerning the role of Crocus Sativus L. on its anti-oxidant and neuroprotective properties. CONCLUSION Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as antioxidants, anti-inflammatory, and neuroprotective agents.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/Oncology Unit, Athens, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/Oncology Unit, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, School of Food Biotechnology and Development, Agricultural University of Athens, Greece
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
39
|
Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. MEDCHEMCOMM 2019; 10:867-879. [PMID: 31303984 PMCID: PMC6596131 DOI: 10.1039/c9md00099b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 7599
| | - Lukasz Ciesla
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 1828
| |
Collapse
|
40
|
|
41
|
Karkoula E, Angelis A, Koulakiotis NS, Gikas E, Halabalaki M, Tsarbopoulos A, Skaltsounis AL. Rapid isolation and characterization of crocins, picrocrocin, and crocetin from saffron using centrifugal partition chromatography and LC-MS. J Sep Sci 2018; 41:4105-4114. [PMID: 30232839 DOI: 10.1002/jssc.201800516] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
This study demonstrates a simple method for one-step isolation of the main secondary metabolites of a hydroalcoholic extract of Crocus sativus stigmas (saffron) using step-gradient centrifugal partition chromatography. The analysis was performed in dual and elution-extrusion mode, using five biphasic systems of the solvents heptane/ethyl acetate/butanol/ethanol/water in ratios of 4:10:0:4:10, 1:13:0:4:10, 1:12:1:4:10, 1:10:3:4:10, and 1:7:6:4:10. Five major crocins, picrocrocin, and crocetin were directly isolated in one step. Scaling up to preparative level, allowed the recovery of significantly high quantities of pure compounds, especially trans-crocin-4, saffron's principal crocin. Comparing dual-mode and elution-extrusion, in dual-mode, the trans-crocin-4 containing fractions were co-eluted with a high amount of free β-d-glucose. In contrast, absence of free β-d-glucose was observed in the corresponding trans-crocin-4 fractions obtained by the second method denoting its superiority against dual-mode. Initiating analysis with the 4th solvent-system afforded selective isolation of trans-crocin-4, with reduction in experimental time and solvent consumption. Structure elucidation was performed by nuclear magnetic resonance spectroscopy, liquid chromatography with mass spectrometry, and high-resolution tandem mass spectrometry. The proposed methodology comprises an integrated approach for the purification and characterization of biologically active saffron components in a fast, selective, and environmentally friendly manner.
Collapse
Affiliation(s)
- Evangelia Karkoula
- Medical School, Department of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece.,Bioanalytical Department, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Gikas
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- Medical School, Department of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece.,Bioanalytical Department, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
42
|
Trans-crocin 4 is not hydrolyzed to crocetin following i.p. administration in mice, while it shows penetration through the blood brain barrier. Fitoterapia 2018; 129:62-72. [PMID: 29920295 DOI: 10.1016/j.fitote.2018.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022]
Abstract
A novel, fit-for-purpose, highly sensitive, analytical UPLC-PDA methodology was developed and fully validated, according to ICH, FDA and EMA guidelines, for the rapid and accurate quantification of trans-crocin 4 (TC4) and crocetin (CRC) in mice plasma and brain after i.p. administration. A PDA based methodology shows a wider applicability as it is cost effective and can be easily and seamlessly adopted by the pharma industry. The separation of the analytes was performed on a C18 Hypersil Gold column with 2.5 min run time, employing the internal standard (ISTD) methodology. The two methods were successfully applied for the determination of CRC and TC4 in mouse plasma and brain after i.p. administration of TC4 (50 mg/kg) in a time range of 0-240 min. Due to the selection of i.p. administration route, the first-pass metabolism and/or gastric hydrolysis were bypassed, a fact that enhanced the bioavailability of TC4. Furthermore, TC4 was found to be capable of crossing the Blood Brain Barrier (BBB) and build up levels in the mouse brain, regardless of its highly hydrophilic character. CRC was not detected in any plasma or brain sample, although it has been reported that TC4 quickly hydrolyzes to CRC after p.o. administration. Therefore i.p. administration could be used in the case of TC4 for the accurate determination of its biological role. Overall, the developed methodology offers important information about the bioavailability of TC4 in mouse plasma and for the first time, demonstrates the ability of TC4 to penetrate the BBB and localize inside the brain.
Collapse
|
43
|
Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4120458. [PMID: 29849893 PMCID: PMC5926482 DOI: 10.1155/2018/4120458] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Carotenoids, symmetrical tetraterpenes with a linear C40 hydrocarbon backbone, are natural pigment molecules produced by plants, algae, and fungi. Carotenoids have important functions in the organisms (including animals) that obtain them from food. Due to their characteristic structure, carotenoids have bioactive properties, such as antioxidant, anti-inflammatory, and autophagy-modulatory activities. Given the protective function of carotenoids, their levels in the human body have been significantly associated with the treatment and prevention of various diseases, including neurodegenerative diseases. In this paper, we review the latest studies on the effects of carotenoids on neurodegenerative diseases in humans. Furthermore, animal and cellular model studies on the beneficial effects of carotenoids on neurodegeneration are also reviewed. Finally, we discuss the possible mechanisms and limitations of carotenoids in the treatment and prevention of neurological diseases.
Collapse
|
44
|
Leite GDO, Ecker A, Seeger RL, Krum BN, Lugokenski TH, Fachinetto R, Sudati JH, Barbosa NV, Wagner C. Protective effect of (−)-α-bisabolol on rotenone-induced toxicity in Drosophila melanogaster. Can J Physiol Pharmacol 2018; 96:359-365. [DOI: 10.1139/cjpp-2017-0207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
(−)-α-Bisabolol (BISA) is a sesquiterpene alcohol, which has several recognized biological activities, including anti-inflammatory, anti-irritant, and antibacterial properties. In the present study, we investigated the influence of BISA (5, 25, and 250 μmol/L) on rotenone (500 μmol/L)-induced toxicity in Drosophila melanogaster for 7 days. BISA supplementation significantly decreased rotenone-induced mortality and locomotor deficits. The loss of motor function induced by rotenone correlated with a significant change in stress response factors; it decreased thiol levels, inhibited mitochondria complex I, and increased the mRNA expression of antioxidant marker proteins such as superoxide dismutase (SOD), catalase (CAT), and the keap1 gene product. Taken together, our findings indicate that the toxicity of rotenone is likely due to the direct inhibition of complex I activity, resulting in a high level of oxidative stress. Dietary supplementation with BISA affected the expression of SOD mRNA only at a concentration of 250 μmol/L, and did not affect any other parameter measured. Our results showed a protective effect of BISA on rotenone-induced mortality and locomotor deficits in Drosophila; this effect did not correlate with mitochondrial complex I activity, but may be related to the antioxidant protection afforded by eliminating superoxide generated as a result of rotenone-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gerlânia de Oliveira Leite
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Assis Ecker
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Rodrigo Lopes Seeger
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | | | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | | | - Nilda Vargas Barbosa
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Caroline Wagner
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
- Universidade Federal do Pampa, Campus Caçapava do Sul, Caçapava do Sul – RS, Brazil
| |
Collapse
|
45
|
Finley JW, Gao S. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1005-1020. [PMID: 28098452 DOI: 10.1021/acs.jafc.6b04398] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, in which the death of brain cells causes memory loss and cognitive decline. Several factors are thought to play roles in the development and course of AD. Existing medical therapies only modestly alleviate and delay cognitive symptoms. Current research has been focused on developing antibodies to remove the aggregates of amyloid-β (Aβ) and tau protein. This approach has achieved removal of Aβ; however, no cognitive improvement in AD patients has been reported. The biological properties of saffron, the dry stigma of the plant Crocus sativus L., and particularly its main constituent crocin, have been studied extensively for many conditions including dementia and traumatic brain injury. Crocin is a unique antioxidant because it is a water-soluble carotenoid. Crocin has shown potential to improve learning and memory as well as protect brain cells. A search of the studies on saffron and crocin that have been published in recent years for their impact on AD as well as crocin's effects on Aβ and tau protein has been conducted. This review demonstrates that crocin exhibits multifunctional protective activities in the brain and could be a promising agent applied as a supplement or drug for prevention or treatment of AD.
Collapse
Affiliation(s)
- John W Finley
- Adjunct Professor, Department of Nutrition and Food Science, 111 Food Science Building, Louisiana State University , Baton Rouge, Louisiana 70803, United States
- 14719 Secret Harbor Place, Bradenton, Florida 34202, United States
| | - Song Gao
- Quality Phytochemicals LLC , 13 Dexter Road, East Brunswick, New Jersey 08816, United States
| |
Collapse
|
46
|
Salim C, Rajini PS. Glucose-rich diet aggravates monocrotophos-induced dopaminergic neuronal dysfunction inCaenorhabditis elegans. J Appl Toxicol 2016; 37:772-780. [DOI: 10.1002/jat.3426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chinnu Salim
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Food Protectants and Infestation Control Department; CSIR-Central Food Technological Research Institute; Mysore 570 020 India
| | - P. S. Rajini
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Food Protectants and Infestation Control Department; CSIR-Central Food Technological Research Institute; Mysore 570 020 India
| |
Collapse
|