1
|
Yi X, Qin H, Li G, Kong R, Liu C. Isomer-specific cardiotoxicity induced by tricresyl phosphate in zebrafish embryos/larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134753. [PMID: 38823104 DOI: 10.1016/j.jhazmat.2024.134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tricresyl phosphate (TCP) has received extensive attentions due to its potential adverse effects, while the toxicological information of TCP isomers is limited. In this study, 2 h post-fertilization zebrafish embryos were exposed to tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) or tri-p-cresyl phosphate (TpCP) at concentrations of 0, 100, 300 and 600 μg/L until 120 hpf, and the cardiotoxicity and mechanism of TCP isomers in zebrafish embryos/larvae were evaluated. The results showed that ToCP or TmCP exposure induced cardiac morphological defects and dysfunction in zebrafish, characterized by increased distance between sinus venosus and bulbus arteriosis, increased atrium and pericardial sac area, trabecular defects, and decreased heart rate and blood flow velocity, while no adverse effects of TpCP on zebrafish heart were found. Transcriptomic results revealed that extracellular matrix (ECM) and motor proteins, as well as PPAR signaling pathways, were included in the cardiac morphological defects and dysfunction induced by ToCP and TmCP. Co-exposure test with D-mannitol indicated that the inhibition of energy metabolism by ToCP and TmCP affected cardiac morphology and function by decreasing osmoregulation. This study is the first to report the cardiotoxicity induced by TCP in zebrafish from an isomer perspective, providing a new insight into the toxicity of TCP isomers and highlighting the importance of evaluating the toxicity of different isomers.
Collapse
Affiliation(s)
- Xun'e Yi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyu Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Soundararajan P, Parthasarathy S, Sakthivelu M, Karuppiah KM, Velusamy P, Gopinath SCB, Raman P. Effects of Consuming Repeatedly Heated Edible Oils on Cardiovascular Diseases: A Narrative Review. Curr Med Chem 2024; 31:6630-6648. [PMID: 37877148 DOI: 10.2174/0109298673250752230921090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 10/26/2023]
Abstract
Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.
Collapse
Affiliation(s)
- Prathyusha Soundararajan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Srividya Parthasarathy
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kanchana Mala Karuppiah
- Department of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Palaniyandi Velusamy
- Department of Medical Research, Research & Development, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chromepet, 600 044, Tamil Nadu, India
| | - Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, 01000, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
3
|
Gerber LS, van Kleef RGDM, Fokkens P, Cassee FR, Westerink RH. In vitro neurotoxicity screening of engine oil- and hydraulic fluid-derived aircraft cabin bleed-air contamination. Neurotoxicology 2023; 96:184-196. [PMID: 37120036 DOI: 10.1016/j.neuro.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
In most airplanes, cabin air is extracted from the turbine compressors, so-called bleed air. Bleed air can become contaminated by leakage of engine oil or hydraulic fluid and possible neurotoxic constituents, like triphenyl phosphate (TPhP) and tributyl phosphate (TBP). The aim of this study was to characterize the neurotoxic hazard of TBP and TPhP, and to compare this with the possible hazard of fumes originating from engine oils and hydraulic fluids in vitro. Effects on spontaneous neuronal activity were recorded in rat primary cortical cultures grown on microelectrode arrays following exposure for 0.5h (acute), and 24h and 48h (prolonged) to TBP and TPhP (0.01 - 100µM) or fume extracts (1 - 100µg/mL) prepared from four selected engine oils and two hydraulic fluids by a laboratory bleed air simulator. TPhP and TBP concentration-dependently reduced neuronal activity with equal potency, particularly during acute exposure (TPhP IC50: 10 - 12µM; TBP IC50: 15 - 18µM). Engine oil-derived fume extracts persistently reduced neuronal activity. Hydraulic fluid-derived fume extracts showed a stronger inhibition during 0.5h exposure, but the degree of inhibition attenuates during 48h. Overall, fume extracts from hydraulic fluids were more potent than those from engine oils, in particular during 0.5h exposure, although the higher toxicity is unlikely to be due only to higher levels of TBP and TPhP in hydraulic fluids. Our combined data show that bleed air contaminants originating from selected engine oils or hydraulic fluids exhibit neurotoxic hazard in vitro, with fumes derived from the selected hydraulic fluids being most potent.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Regina G D M van Kleef
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Paul Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco Hs Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Amiri R, Bissram MJ, Hashemihedeshi M, Dorman FL, Megson D, Jobst KJ. Differentiating Toxic and Nontoxic Tricresyl Phosphate Isomers Using Ion-Molecule Reactions with Oxygen. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:640-648. [PMID: 36942790 DOI: 10.1021/jasms.2c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ortho-substituted isomers of tricresyl phosphates (TCPs) and their toxic metabolites (e.g., CBDP: cresyl saligenin phosphate) can cause neurotoxic effects in humans. When TCP is introduced to an atmospheric pressure chemical ionization source using gas chromatography, radical cations M•+ are formed by charge exchange. The mass spectrum of an ortho-substituted isomer displays two intense peaks that are absent in the spectra of non-ortho-substituted isomers, leading us to propose structure-diagnostic ion-molecule reactions between ions M•+ and oxygen species present in the source. However, the mechanisms of these reactions have not yet been established. In this study, we propose a mechanism and provide support through computational and experimental analyses using density functional theory and cyclic ion mobility-mass spectrometry. The mechanism consists of a multistep reaction starting with the rearrangement of the molecular ion into a distonic isomer followed by an oxidation step and then decomposition into [CBDP-H]+. This proposal is consistent with the results obtained from a series of isotopically labeled analogues. Cyclic ion mobility experiments with a tri-o-cresyl phosphate standard reveal the presence of at least two hydrogen shift isomers of the product ion [CBDP-H]+ that are connected by a low-lying barrier. The selectivity of the ion-molecule reactions toward ortho-substituted cresyl TCP isomers provides us with an identification tool that can select potentially neurotoxic triaryl phosphate esters present in complex mixtures that are produced in large volume by industry.
Collapse
Affiliation(s)
- Roshanak Amiri
- Department of Chemistry, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C5S7
| | - Meera J Bissram
- Department of Chemistry, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C5S7
| | - Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C5S7
| | - Frank L Dorman
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - David Megson
- Department of Natural Science, Ecology and Environment Research Center, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C5S7
| |
Collapse
|
5
|
Staal YCM, Li Y, Gerber LS, Fokkens P, Cremers H, Cassee FR, Talhout R, Westerink RHS, Heusinkveld HJ. Neuromodulatory and neurotoxic effects of e-cigarette vapor using a realistic exposure method. Inhal Toxicol 2023; 35:76-85. [PMID: 36053669 DOI: 10.1080/08958378.2022.2118911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The most direct effects of inhaled harmful constituents are the effects on the airways. However, inhaled compounds can be rapidly absorbed and subsequently result in systemic effects. For example, e-cigarette vapor has been shown to evoke local effects in the lung, although little is known about subsequent effects in secondary target organs such as the brain. Traditionally, such effects are tested using in vivo models. As an alternative, we have combined two in vitro systems, which are Air-Liquid-Interface (ALI) cultured alveolar cells (A549) and rat primary cortical cultures grown on multi-well microelectrode arrays. This allows us to assess the neurological effects of inhaled compounds. We have used exposure to e-cigarette vapor, containing nicotine, menthol, or vanillin to test the model. Our results show that ALI cultured A549 cells respond to the exposure with the production of cytokines (IL8 and GROalpha). Furthermore, nicotine, menthol, and vanillin were found on the basolateral side of the cell culture, which indicates their translocation. Upon transfer of the basolateral medium to the primary cortical culture, exposure-related changes in spontaneous electrical activity were observed correlating with the presence of e-liquid components in the medium. These clear neuromodulatory effects demonstrate the feasibility of combining continuous exposure of ALI cultured cells with subsequent exposure of neuronal cells to assess neurotoxicity. Although further optimization steps are needed, such a combination of methods is important to assess the neurotoxic effects of inhaled compounds realistically. As such, an approach like this could play a role in future mechanism-based risk assessment strategies.
Collapse
Affiliation(s)
- Yvonne C M Staal
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Yixuan Li
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Paul Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Hans Cremers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Reinskje Talhout
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Harm J Heusinkveld
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
6
|
Ghislain M, Reyrolle M, Sotiropoulos JM, Pigot T, Plaisance H, Le Bechec M. Study of the Chemical Ionization of Organophosphate Esters in Air Using Selected Ion Flow Tube-Mass Spectrometry for Direct Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:865-874. [PMID: 35416666 DOI: 10.1021/jasms.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organophosphate esters are an emerging environmental concern since they spread persistently across all environmental compartments (air, soil, water, etc.). Measurements of semivolatile organic compounds are important but not without challenges due to their physicochemical properties. Selected ion flow tube-mass spectrometry (SIFT-MS) can be relevant for their analysis in air because it is a direct analytical method without separation that requires little preparation and no external calibration. SIFT-MS is based on the chemical reactivity of analytes with reactant ions. For volatile and semivolatile organic compound analysis in the gas phase, knowledge of ion-molecule reactions and kinetic parameters is essential for the utilization of this technology. In the present work, we focused on organophosphate esters, semivolatile compounds that are now ubiquitous in the environment. The ion-molecule reactions of eight precursor ions that are available in SIFT-MS (H3O+, NO+, O2•+, OH-, O•-, O2•-, NO2-, and NO3-) with six organophosphate esters were investigated. The modeling of ion-molecule reaction pathways by calculations supported and complemented the experimental work. Organophosphate esters reacted with six of the eight precursor ions with characteristic reaction mechanisms, such as protonation with hydronium precursor ions and association with NO+ ions, while nucleophilic substitution occurred with OH-, O•-, and O2•-. No reaction was observed with NO2- and NO3- ions. This work shows that the direct analysis of semivolatile organic compounds is feasible using SIFT-MS with both positive and negative ionization modes.
Collapse
Affiliation(s)
- Mylène Ghislain
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Marine Reyrolle
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Jean-Marc Sotiropoulos
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Thierry Pigot
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Hervé Plaisance
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| | - Mickael Le Bechec
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France
| |
Collapse
|
7
|
Xiang D, Wang Q. PXR-mediated organophorous flame retardant tricresyl phosphate effects on lipid homeostasis. CHEMOSPHERE 2021; 284:131250. [PMID: 34225124 DOI: 10.1016/j.chemosphere.2021.131250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
An emerging experimental framework suggests that endocrine-disrupting compounds are candidate obesogens. However, this potential effect has not yet been determined for Tricresyl phosphate (TCP), a mass-produced organophosphate flame retardant (OPFR) that has been exposed to human beings in many ways. Many OPFRs, including TCP, have been shown to activate pregnane X receptor (PXR), a nuclear receptor that regulates lipid metabolism. Accordingly, we found that TCP exposure caused lipid accumulation in HepG2 cells in this study. Therefore, to elucidate the role of PXR played in TCP metabolism and promotion of lipid accumulation, HepG2 cells were exposed to different concentrations (5 × 10-8 to 5 × 10-5 M) of TCP for 24 h. The enlarged hepatic lipid droplets and increased hepatic triglyceride contents were observed in HepG2 cells after TCP exposure for 24 h. This is the result of a confluence of lipogenesis increase and β-oxidation suppression imposed by PXR activation which was verified by the up regulation of genes in fatty acid (FA) synthesis and the down regulation of genes in β-oxidation. Surface plasmon resonance (SPR) analysis and molecular docking revealed favorable binding mode of TCP to PXR and the knockout of PXR gene with CRISPR/cpf1 system in HepG2 cells abolished TCP-induced triglyceride accumulation, thus underlying the crucial role of PXR in hepatic lipid metabolism resulting from OPFRs exposure. This study enhances our understanding of molecular mechanisms and associations of PXR in lipid metabolism disturbance induced by TCP and provides novel evidence regarding the lipotoxicity effect and potential metabolism pathway of OPFRs.
Collapse
Affiliation(s)
- Dandan Xiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
8
|
Hayes K, Megson D, Doyle A, O'Sullivan G. Occupational risk of organophosphates and other chemical and radiative exposure in the aircraft cabin: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148742. [PMID: 34375198 DOI: 10.1016/j.scitotenv.2021.148742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Occupational exposure to oil fumes, organophosphates, halogenated flame retardants, and other volatile and semi-volatile contaminants is a concern within the aviation industry. There is no current consensus on the risk attributed to exposure to these chemical classes within the aircraft cabin. Contaminant concentrations rarely exceed conventional air quality guidelines, but concerns have been raised about these guidelines' applicability within the aircraft environment. This systematic review, the largest and most comprehensive completed to date on the subject matter, aims to synthesize the existing research related to chemical and other exposures inside the aircraft cabin to determine the occupational risk that may be attributed said exposure, as well as, determine knowledge gaps in source, pathway, and receptor that may exist. The Science Direct, Scopus, and Web of Science databases were queried with five search terms generating 138 manuscripts that met acceptance criteria and screening. Several potential areas requiring future examination were identified: Potable water on aircraft should be examined as a potential source of pollutant exposure, as should air conditioning expansion turbines. Historical exposure should also be more fully explored, and non-targeted analysis could provide valuable information to comprehend the aircraft cabin exposome. Occupational risk under typical flight scenarios appears to be limited for most healthy individuals. Contaminants of concern were demonstrated to be extant within the cabin, however the concentrations under normal circumstances do not appear to be individually responsible for the symptomologies that are present in impacted individuals. Questions remain regarding those that are more vulnerable or susceptible to exposure. Additionally, establishing the effects of chronic low dose exposure and exposure to contaminant mixtures has not been satisfied. The risk of acute exposure in mitigable fume events is substantial, and technological solutions or the replacement of compounds of concern for safer alternatives should be a priority.
Collapse
Affiliation(s)
- Kevin Hayes
- Manchester Metropolitan University, Department of Natural Sciences, Chester Street, Manchester M1 5GD, UK; Mount Royal University, Department of Earth & Environmental Science, Calgary, Alberta T3E 6K6, Canada.
| | - David Megson
- Manchester Metropolitan University, Department of Natural Sciences, Chester Street, Manchester M1 5GD, UK
| | - Aidan Doyle
- Manchester Metropolitan University, Department of Natural Sciences, Chester Street, Manchester M1 5GD, UK
| | - Gwen O'Sullivan
- Mount Royal University, Department of Earth & Environmental Science, Calgary, Alberta T3E 6K6, Canada
| |
Collapse
|
9
|
Negi CK, Bajard L, Kohoutek J, Blaha L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117855. [PMID: 34340181 DOI: 10.1016/j.envpol.2021.117855] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Chander K Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Jiri Kohoutek
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Ludek Blaha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic.
| |
Collapse
|
10
|
Ren Z, Poopal RK, Ramesh M. Synthetic organic chemicals (flame retardants and pesticides) with neurotoxic potential induced behavioral impairment on zebrafish (Danio rerio): a non-invasive approach for neurotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37534-37546. [PMID: 33713268 DOI: 10.1007/s11356-021-13370-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Behavior responses of organisms can be used as a non-invasive method for neurotoxicology studies since it directly links the nervous system's functioning and biochemical activities. Among different behavioral activities, aquatic organisms' swimming behavior (fitness) is the essential factor for health assessment; thus, it is practiced routinely in neurotoxicological studies. Zebrafish (Danio rerio) are excellent models for neurotoxicology studies. Based on the above information, we hypothesized that zebrafish's swimming behavior is a potential biomarker for neurotoxic effect assessment. We exposed zebrafish (length, 3-4 cm; weight, 0.2-0.3 g) to different synthetic organic chemicals (organophosphorus flame retardants (tri-cresyl phosphate and cresyl diphenyl phosphate) and neurotoxic pesticides (cypermethrin and methomyl) for 15 days. For each test chemical, we chose two different concentrations (Treatment-I 5 μL/L and Treatment-II 25 μL/L) to study their eco-toxicity. The swimming strength of zebrafish was quantified using an online monitoring system. The swimming strength of zebrafish decreased under different treatments (Treatment-I (5 μL/L) and -II (25 μL/L)) of target chemicals. The circadian rhythm of zebrafish was predominantly not affected in this study. Higher neurotoxic effect (behavioral impairment) was observed in Treatment-II when compare to Treatment-I of organophosphorus flame retardants and pesticides groups. Responses of zebrafish under organophosphorus flame retardant (tri-cresyl phosphate and cresyl diphenyl phosphate) treatments were identical with pesticide (cypermethrin and methomyl) treatments. Based on the results, we conclude that swimming behavior could be an ideal non-invasive biomarker to assess waterborne contaminants' neurotoxic effect.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Sibomana I, Rohan JG, Mattie DR. 21-Day dermal exposure to aircraft engine oils: effects on esterase activities in brain and liver tissues, blood, plasma, and clinical chemistry parameters for Sprague Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:357-388. [PMID: 33380269 DOI: 10.1080/15287394.2020.1867680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.
Collapse
Affiliation(s)
- Isaie Sibomana
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, OH, USA
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
12
|
Knoll-Gellida A, Dubrana LE, Bourcier LM, Mercé T, Gruel G, Soares M, Babin PJ. Hyperactivity and Seizure Induced by Tricresyl Phosphate Are Isomer Specific and Not Linked to Phenyl Valerate-Neuropathy Target Esterase Activity Inhibition in Zebrafish. Toxicol Sci 2021; 180:160-174. [DOI: 10.1093/toxsci/kfab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri-meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test. The electric field pulse motor response test demonstrated that a seizure-like, multiple C-bend-spaghetti phenotype may be significantly induced by ToCP only, independently of any inhibition of PV-NTE activity. Eleuthero-embryos exposed to picrotoxin, a known gamma-aminobutyric acid type-A receptor inhibitor, exhibited similar adverse outcomes to ToCP exposure. Thus, our results demonstrated that the TCP mode of toxic action was isomer specific and not initially related to modulation of PV-NTE activity. Furthermore, it was suggested that the molecular events involved were linked to an impairment of the balance between excitation and inhibition in neuronal circuits.
Collapse
Affiliation(s)
- Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| | - Leslie E Dubrana
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| | - Laure M Bourcier
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| | - Théo Mercé
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| | - Gaëlle Gruel
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| | - Magalie Soares
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| | - Patrick J Babin
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, F-33615 Pessac, France
| |
Collapse
|
13
|
Finsterer J. Clinical Therapeutic Management of Human Mitochondrial Disorders. Pediatr Neurol 2020; 113:66-74. [PMID: 33053453 DOI: 10.1016/j.pediatrneurol.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
Despite recent advances in the elucidation of etiology and pathogenesis of mitochondrial disorders, their therapeutic management remains challenging. This review focuses on currently available therapeutic options for human mitochondrial disorders. Current treatment of mitochondrial disorders relies on symptomatic, multidisciplinary therapies of various manifestations in organs such as the brain, muscle, nerves, eyes, ears, endocrine organs, heart, intestines, kidneys, lungs, bones, bone marrow, cartilage, immune system, and skin. If respiratory chain functions are primarily or secondarily impaired, antioxidants or cofactors should be additionally given one by one. All patients with mitochondrial disorders should be offered an individually tailored diet and physical training program. Irrespective of the pathogenesis, all patients with mitochondrial disorders should avoid exposure to mitochondrion-toxic agents and environments. Specific treatment can be offered for stroke-like episodes, mitochondrial epilepsy, mitochondrial neurogastrointestinal encephalopathy, Leber hereditary optic neuropathy, thiamine-responsive Leigh syndrome, primary coenzyme Q deficiency, primary carnitine deficiency, Friedreich ataxia, ethylmalonic encephalopathy, acyl-CoA dehydrogenase deficiency, pyruvate dehydrogenase deficiency, and hereditary vitamin E deficiency. Preventing the transmission of mitochondrial DNA-related mitochondrial disorders can be achieved by mitochondrion replacement therapy (spindle transfer, pronuclear transfer). In conclusion, specific and nonspecific therapies for human mitochondrial disorders are available, and beneficial effects have been anecdotally reported. However, double-blind, placebo-controlled studies to confirm effectiveness are lacking for the majority of the measures applied to mitochondrial disorders. Transmission of certain mitochondrial disorders can be prevented by mitochondrion replacement therapy. A multidisciplinary approach is required to meet the therapeutic challenges of patients with mitochondrial disorders.
Collapse
|
14
|
Ji X, Li N, Ma M, Rao K, Yang R, Wang Z. Tricresyl phosphate isomers exert estrogenic effects via G protein-coupled estrogen receptor-mediated pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114747. [PMID: 32559878 DOI: 10.1016/j.envpol.2020.114747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tricresyl phosphates (TCPs), as representative aromatic organophosphate flame retardants (OPFRs), have received much attention due to their potential neurotoxicity and endocrine-disrupting effects. However, the role of estrogen receptor α (ERα) and G protein-coupled estrogen receptor (GPER) in their estrogen disrupting effects remains poorly understood. Therefore, in this study, three TCP isomers, tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP), were examined for their activities on ERα by using two-hybrid yeast assay, and action on GPER by using Boyden chamber assay, cAMP production assay, calcium mobilization assay and molecular docking analysis. The results showed that three TCP isomers were found to act as ERα antagonists. Conversely, they had agonistic activity on GPER to promote GPER-mediated cell migration of MCF7 cells and SKBR3 cells. Both ToCP and TpCP activated GPER-mediated cAMP production and calcium mobilization, whereas TmCP had different mode of action, it only triggered GPER-mediated calcium mobilization, as evidenced by using the specific GPER inhibitor (G15) and GPER overexpressing experiments. Molecular docking further revealed that the way of interaction of TmCP and TpCP with GPER was different from that of ToCP with GPER, and higher activity of ToCP in activating GPER-mediated pathways might be associated with the alkyl substitution at the ortho position of the aromatic ring. Our results, for the first time, found a new target, GPER, for TCPs exerting their estrogen-disrupting effects, and demonstrated complex estrogen-disrupting effects of three TCP isomers involved their opposite activities toward ERα and GPER.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Yang
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing, 100093, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
15
|
Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application. SENSORS 2020; 20:s20082317. [PMID: 32325666 PMCID: PMC7219232 DOI: 10.3390/s20082317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
Tricresyl phosphate (TCP) is an organophosphorous neurotoxin that has been detected in water, soil and air. Exposure to TCP in cockpit and cabin air poses a severe threat to flight safety and the health of the aircraft cabin occupants. Conventional methods for the detection of TCP in various samples are gas or liquid chromatography coupled to mass spectrometry, which are complex and expensive. To develop a simple low-cost methodology for the real-time monitoring of TCP in the environment, an effective catalyst is demanded for the hydrolysis of TCP under neutral condition. In this study, Ruthenium (III) hydroxide and Iron (III) hydroxide are found to facilitate the production of the alcoholysis and hydrolysis products of TCP, suggesting their role as a catalyst. With this finding, these metal hydroxides provide new potential to realize not only simple colorimetric or electrochemical detection of TCP, but also a simple detoxication strategy for TCP in environment. In addition, the catalytic capability of Ru (III) or Fe (III) hydroxide for TCP gives a hint that they can potentially serve as catalysts for the hydrolysis of alcolyolysis of many other organophosphate compounds.
Collapse
|
16
|
Liu Y, Yin H, Wei K, Peng H, Lu G, Dang Z. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. CHEMOSPHERE 2019; 232:195-203. [PMID: 31154180 DOI: 10.1016/j.chemosphere.2019.05.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Tricresyl phosphates (TCPs), a typical sort of organophosphate flame retardants, has received extensive concerns due to its potential adverse effects. However, limited information is available on the efficient and safe removal methods of TCPs. In this regard, TCPs were tentatively biodegraded with Brevibacillus brevis. A probable degradation pathway was further proposed with the cellular reactions discussed in detail. Experiments showed that B. brevis at 2 g L-1 could degrade 1 mg L-1 tri-m-cresyl phosphate, tri-p-cresyl phosphate, and tri-o-cresyl phosphate by 82.91%, 93.91%, and 53.92%, respectively, within five days. In the process of biodegradation, B. brevis metabolism caused the release of Na+ and Cl- as well as the absorption of some nutrient ions including K+, PO43-, Mg2+, and SO42-; the presence of oxalic acid, citric acid, acetic acid, and malonic acid was also detected. Similar metabolic pathways were found among different TCPs isomers, but tri-o-cresyl phosphate induced more reactive oxygen species than the other two did. This work develops novel insights into the potential mechanisms of TCPs biodegradation by microorganisms.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China.
| | - Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
17
|
Shafer TJ. Application of Microelectrode Array Approaches to Neurotoxicity Testing and Screening. ADVANCES IN NEUROBIOLOGY 2019; 22:275-297. [PMID: 31073941 DOI: 10.1007/978-3-030-11135-9_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurotoxicity can be defined by the ability of a drug or chemical to alter the physiology, biochemistry, or structure of the nervous system in a manner that may negatively impact the health or function of the individual. Electrophysiological approaches have been utilized to study the mechanisms underlying neurotoxic actions of drugs and chemicals for over 50 years, and in more recent decades, high-throughput patch-clamp approaches have been utilized by the pharmaceutical industry for drug development. The use of microelectrode array recordings to study neural network electrophysiology is a relatively newer approach, with commercially available systems becoming available only in the early 2000s. However, MEAs have been rapidly adopted as a useful approach for neurotoxicity testing. In this chapter, I will review the use of MEA approaches as they have been applied to the field of neurotoxicity testing, especially as they have been applied to the need to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. In addition, I will also identify challenges for the field that when addressed will improve the utility of MEA approaches for toxicity testing.
Collapse
Affiliation(s)
- Timothy J Shafer
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (NHEERL), US EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
18
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
19
|
Abstract
One of the major classes of pesticides is that of the organophosphates (OPs). Initial developments date back almost 2 centuries but it was only in the mid-1940s that OPs reached a prominent status as insecticides, a status that, albeit declining, is still ongoing. OPs are highly toxic to nontarget species including humans, the primary effects being an acute cholinergic toxicity (responsible for thousands of poisoning each year) and a delayed polyneuropathy. Several issues of current debate and investigation on the toxicology of OPs are discussed in this brief review. These include (1) possible additional targets of OPs, (2) OPs as developmental neurotoxicants, (3) OPs and neurodegenerative diseases, (4) OPs and the "aerotoxic syndrome," (5) OPs and the microbiome, and (6) OPs and cancer. Some of these issues have been debated and studied for some time, while others are newer, suggesting that the study of the toxicology of OPs will remain an important scientific and public health issue for years to come.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
- Department of Medicine and Surgery, University of Parma, Parma 43100, Italy
| |
Collapse
|
20
|
Strickland JD, Martin MT, Richard AM, Houck KA, Shafer TJ. Screening the ToxCast phase II libraries for alterations in network function using cortical neurons grown on multi-well microelectrode array (mwMEA) plates. Arch Toxicol 2018; 92:487-500. [PMID: 28766123 PMCID: PMC6438628 DOI: 10.1007/s00204-017-2035-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Methods are needed for rapid screening of environmental compounds for neurotoxicity, particularly ones that assess function. To demonstrate the utility of microelectrode array (MEA)-based approaches as a rapid neurotoxicity screening tool, 1055 chemicals from EPA's phase II ToxCast library were evaluated for effects on neural function and cell health. Primary cortical networks were grown on multi-well microelectrode array (mwMEA) plates. On day in vitro 13, baseline activity (40 min) was recorded prior to exposure to each compound (40 µM). Changes in spontaneous network activity [mean firing rate (MFR)] and cell viability (lactate dehydrogenase and CellTiter Blue) were assessed within the same well following compound exposure. Following exposure, 326 compounds altered (increased or decreased) normalized MFR beyond hit thresholds based on 2× the median absolute deviation of DMSO-treated wells. Pharmaceuticals, pesticides, fungicides, chemical intermediates, and herbicides accounted for 86% of the hits. Further, changes in MFR occurred in the absence of cytotoxicity, as only eight compounds decreased cell viability. ToxPrint chemotype analysis identified several structural domains (e.g., biphenyls and alkyl phenols) significantly enriched with MEA actives relative to the total test set. The top 5 enriched ToxPrint chemotypes were represented in 26% of the MEA hits, whereas the top 11 ToxPrints were represented in 34% of MEA hits. These results demonstrate that large-scale functional screening using neural networks on MEAs can fill a critical gap in assessment of neurotoxicity potential in ToxCast assay results. Further, a data-mining approach identified ToxPrint chemotypes enriched in the MEA-hit subset, which define initial structure-activity relationship inferences, establish potential mechanistic associations to other ToxCast assay endpoints, and provide working hypotheses for future studies.
Collapse
Affiliation(s)
- Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Matthew T Martin
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
- Pfizer Inc, Groton, CT, USA
| | - Ann M Richard
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
| | - Keith A Houck
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
| | - Timothy J Shafer
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, MD105-05, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
21
|
Voorhees JR, Rohlman DS, Lein PJ, Pieper AA. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front Neurosci 2017; 10:590. [PMID: 28149268 PMCID: PMC5241311 DOI: 10.3389/fnins.2016.00590] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.
Collapse
Affiliation(s)
- Jaymie R. Voorhees
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
| | - Diane S. Rohlman
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa College of Public HealthIowa City, IA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, DavisDavis, CA, USA
| | - Andrew A. Pieper
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Neurology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Free Radical and Radiation Biology Program, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Veteran Affairs, University of Iowa Carver College of MedicineIowa City, IA, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical CollegeNew York, NY, USA
| |
Collapse
|